Model Based Controls

Moving Beyond Software Domain MAC 2015

Edmund Hodzen

May 12th, 2015

Cummins Data Classification Public Information

Agenda

- Introduction to Cummins
- Objectives Of Model Based Development
- Concepts to accelerate MBD Capability
- Summary

Cummins Broad Product Range

 engine platforms covering 60 to 4200 horsepower, world wide market

Powerplant Level Simulation Framework

Effective Integration of complex systems requires MBD Integration

Application Diversity

Control System Development Problem Statement

- For complex, highly engineered/ regulated products:
 - "Traditional" embedded software centric development methods do not provide:
 - Sufficient means to manage Increase system complexity
 - Integration with OEM Modeling/Analysis

- For Cummins MBD is our strategy for improvement
 - Integration of the physical modeling is the challenge

Cummins MBD (Controls) History

MBD capability growth takes continual process improvement and Investment

Accelerating MBD, Reducing Development Cost

- Software workflow Improvements
 - Reduction in engineering SW builds by 80%
 - Integration of Control MIL with HIL, work flows (\$xM/yr)
 - But more importantly, improved test coverage
- Calibration Workflow
 - MIL Transient Engine Calibration
 - » 50% Test Cell Reduction

HIL

Accelerating MBD, Improved Product

- Product Robustness
 - Ability to simulate system
 - Off nominal operation
 - Subsystem/component uncertainty
 - Goals
 - Reduced warranty cost
 - Improved product performance
 - Controls Architecture Selection

"Intellectuals solve problems, geniuses prevent them.".

-Albert Einstein

Modeled Variation in EGR Flow

Integrated MBD Workflow

Model Capability Continuum

Modeling in Adv. Control Design - MPC

Model in the Loop Simulation (control verification and initial calibration)

Data Management and Visualization

 TBytes of data! Tools needed make rapid, effective, assessments of results.

Model Fidelity and Simplification

- Required model fidelity?
 - Dynamic fidelity needs more rigor
 - Also: Need to understand the predictive capability
- Simplification
 - Easy migration to reduced order models is required.
 - Still need frequency domain capability

Plant Model Configuration Management

- Models need the same CM rigor as the embedded software.
 - Model State / capability/ source needs to be clear
 - Local copies, tuning adaptions make model validity difficult to access.
 - Model revisions should include validation, fidelity documentation.

Source MAB 2014

Co-sim Compatibility

- Sharing of plant and controller models is becoming increasingly important.
- Solution: FMI standard Or Integrated tools (Simulink/Simscape)

Summary / Recommendations

Thank you for your Attention

