Virtual-Vehicle Application:
Battery Cooling Network Study

MathWorks
AUTOMOTIUVE

CONFERENCE 2020 ‘
<} MathWorks-



} MathWorks

L} L} n | |
n #4 Battery_Cooling Network_Motars * - Simulink - O 'Y
Virtual Vehicle Appllcat|0| .
EE:I 3 Open - gg X 0 E Stop Time q& @ uD - ﬁ
L] New @ S22~ Library og Add Signal = [ Nomal | Step Run Step Data
n l l ~ B Print v  Browser = Teble B Fast Restart Back v = Forward Inspector
a e ry O O I g e WO r y FILE LIERARY PREPARE SIMULATE REVIEW RESULTS ry
L= Battery_Cooling_Network_Motors
®
Battery L @ CtriBus . MotorF
@
& i —»@ OutP . BatterySOC Tr
= + | mp—>@ OutP. MotorF
= —1+ 2+ T +
J— 2_ Py R
O v T ‘ 9 RI—
> F = |n H
DC-DC Converter Motor F
*3 EReferencebpplcaon Sk = @ = OutP . Thermal L @ CtriBus . MotorRL
@ Lmed - 2] ) & SopTime @ - Tr ‘
e e | e e = |7 e b e [ e m Conv]| . [+] m—>®@outP.MotorRL
;:Rde:an:e&ppl\:anan o ) o o ) ~ N ) b . - ‘
Bin Fl— ] | ShaftF W Shafts
= R ShaftRL
= BOut RL H
; Environment I ~— ShaftRR
Cooling Amb RR | Motor RL ‘
. Design_A @ CtriBus . MotorRR
A Visualization Cooling System L. T ‘
v
J i | ] Ambient . [+] m>®@o0utP.MotorRR
Drive Cycle Source CE— - Temperature == -
FTP75 (2474 seconds) Longitudinal Driver Passenger Car ;
R -_—
Controllers - H
L J—? Motor RR
e Copyright 2015-2020 The MathWorks, Inc. » B
» Ready 187% VariableStepAuto

© 2020 The MathWorks, Inc.




4\ MathWorks:

/
Key Takeaways 1 CFD and
_ FEA
Computation
Time Lumped
. ] Parameter
= Battery cooling network design Spreadsheet  Network
requires component level analysis —_— .

Model Fidelity

and tests within a full-vehicle simulation
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- Integrating fluid, thermal, electrical, m” __ 4 — [F]
and mechanical domains is key ; s 2 r R
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of drive cycles and ambient conditions S
are needed to evaluate design criteria T = C@ —
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Agenda

Importance of Battery Cooling

Exploring Battery Cooling Network Designs

Integration in Vehicle Model

Evaluation of Design in Full Vehicle Tests
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EV Sales and Market Share

Data Source: International Energy Agency (2018)

Why Explore Battery Cooling?
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= Electrification Is a cross-industry market driver o [mEmoveroc:
— Power, heating, transportation
— Shift to electric and hybrid powertrains

= Key to success: efficiency and safety

Millions
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Agenda

= Exploring Battery Cooling Network Designs
= Integration in Vehicle Model

= Evaluation of Design in Full Vehicle Tests
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Design Challenge: Battery Cooling Network g< goC

/ \
] \

il B

= Requirements
— Cell temperature range: 20-40 °C
— Cell temperature max delta: 8 °C

-20°C

L Ll
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= Evaluation —K)]: One-Pass
— Hot and cold environments —Pﬂl
— Driving conditions (FTP75, US06, WOT, etc.) ]l il
— Charge cycle b ) _

’ Y
Two-Pass —1 J
|

= Two options considered
— One-pass
— Two-pass
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Design Process for Battery Cooling Network

1. Explore designs
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Design Process for Battery Cooling Network

1. Explore designs
2. Integrate in vehicle model
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Design Process for Battery Cooling Network

1. Explore designs

2. Integrate in vehicle model
3. Perform full vehicle tests

Maneuver/
Drive Cycle

Driver

Environment Vehicle J
08
| Vehicle-level EmiAr |
| Controllers
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Design Challenge: Battery Cooling Network
Modeling and Simulation Options

CFD and FEA Computational Time vs. Model Complexity
— Accurate, but computation intensive 4
Spreadsheet o
— Accessible, but limited scalability £
— Limited options for integrating other models &
P J J % Lumped

_ 3 Parameter
Lumped parameter physical networks £ Network
— Less accurate than CFD, but scalable 4

Spreadsheet

— Appropriate for system-level analysis

— Integrates well with other domains

. . : Model Complexity & Detall
including control algorithms
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Simscape: Build Accurate Models Quickly

=  Simply connect the
components you need

= The more complex the
system, the more value
you get from Simscape

= Resulting model is
Intuitive, easy to modify,
and easy for others
to understand

’i Mass_Spring_Damper - Simulink

File Edit View Display Diagram Simulation Analysis Code Tools Help
Mass_Spring_Damper
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« FSpring = kSpring*(XMass)
£
_ dXMass
l:"Damper - bDamper*( dt )
. 2
d XMass _ _FSpring _ l:Damper
dtz MpMass
_'._
4,| >_, 1 1
>l s s
@ k |<
P

Input/Output Block Diagram

o Mass1
[ Spring1
O

12



Physical Modeling

W ithin Simulink

= Simulink is best known for

sighal-based modeling

— Causal, or input/output

= Simscape enables
bidirectional flow of energy
between components

= System level equations:
— Formulated automatically

— Solved simultaneously

— Cover multiple domains

Hydraulic
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Simulink: Input/Output

Simscape: Physical Networks
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equations
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Battery Model

« Modeled using Simscape
— 60kWhtotal capacity (4 sections)
— Equivalent circuit captures transient dynamics
— Lookup tables: nonlinear and thermal effects
— Battery aging can be included

Block Pararneters: Battery (Table-Based) >

Battery (Table-Based)

Main Dynamics Fade Thermal Variables

Fade |[Equations v

Equations
Lookup tables (temperature independent’
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depend upon SOC, DOC, and temperature
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Battery Pack

= Create test to compare the
cooling network designs

= Lumped thermal model
— Divided into four sections along flow path

= Heat transferred to different
portions of the cooling channel
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Battery Cooling Network

= Physical connections in the Simscape model match architecture of design
One-Pass Two-Pass
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Battery Cooling Network

= Simplify testing using
Variant Subsystems
— Swap in different cooling designs

— Interactive or automated
using MATLAB commands

= Same model, settings,
and test set up
— Input vectors
— Results analysis
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Cooling Network Test

= Fast charge (cooling critical)
1. From 2% to 99% in 1 hour

2. Range of coolant flow rates
State of Charge
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Cooling Network Test

= Fast charge (cooling critical)

= Performance criteria
a. Maximum temperature
b. Temperature gradients
c. Pump power consumption

Section Temperature

A

—— Section 1
Section 2 |]
Section 3
—— Section 4
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Component Level Analysis

= Criteria 1: Temperature Range

— For same flow rate, Two-Pass
has lower maximum temperature

— Acceptable range for either design
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MaX|mum Temperature vs. Flow Rate
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Component Level Analysis

= Criteria 1: Temperature Range

— For same flow rate, Two-Pass
has lower maximum temperature

— Acceptable range for either design

= Criteria 2: Temperature Gradient
— Both designs acceptable

— Two-pass has very low temperature
difference between sections

Maximum Temperature (°C)

N
w
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MaX|mum Temperature vs. Flow Rate
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Component Level Analysis

= Criteria 3: Pump Power
— One Pass requires less pump power
than Two Pass for the same flow rate

= Two Pass has smaller pipe diameter
and longer channel
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Component Level Analysis

= Criteria 3: Pump Power

— One Pass requires less pump power
than Two Pass for the same flow rate

= Two Pass has smaller pipe diameter
and longer channel

= Test shows advantages of designs

= Now test system in vehicle
— Control system, rest of physical system
— See which criteria is most important
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Maximum Temperature vs. Pump Power
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Agenda

= Integration in Vehicle Model

= Evaluation of Design in Full Vehicle Tests
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Electric Vehicle Model
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Electric Vehicle Model

= Battery Electric vehicle

= 3-Motor Architecture
— Rear. 40 kW Motor (2X)
— Front: 60 kW Motor

M
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Full Vehicle Test

= Integrate into Reference Application
from Powertrain Blockset
— Baseline model provides architecture
— Extend to 3 motor system

= Use Model-Based Design to

— Assess performance including
fuel economy and acceleration

— Develop control algorithms
— Deploy to hardware
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Powertrain Blockset

Library of blocks
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Pre-built reference applications
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The conventional vehicle reference
application represents a full vehicle
model with an internal combustion
engine, transmission, and

| i
» Transmission Vehicle Dynamics Vehicle Scenario Builder
W
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Electric Vehicle Reference
Application

The electric vehicle (EV) reference
application represents a full eleciric
vehicle model with a motor-
generator, battery, direct-drive
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The hybrid eleciric vehicle (HEV)
multimode reference application
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Hybrid Electric Vehicle
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Reference Application

The hybrid electric vehicle (HEV)
input power-split reference
application represents a full HEV
model with an internal combustion

Engine Dynamometer
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S| Engine Dynamometer
Reference Application

The spark-ignition (S1) engine
dynamometer reference application
represents a Sl engine plant and
controller connected to a

Hybrid Electric Vehicle P2
Reference Application

The hybrid electric vehicle (HEV) P2
reference application represents a
full HEV model with an internal
combustion engine, transmission,




Agenda

= Evaluation of Design in Full Vehicle Tests
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Scenario Testing

= 342 simulations:
— 2 cooling networks
— 57 drive cycles
— 3 temperatures: 0/20/40 °C

= Criteria
— Temperature range: 20-40 °C
— Temperature gradient: <8 °C
— Total cooling energy

= Accelerate testing
— Parallel Computing Toolbox
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Summary of Results Results from One Drive Cycle
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Key Takeaways 1 CFD and
_ FEA
Computation
Time Lumped
. ] Parameter
= Battery cooling network design Spreadsheet  Network
requires component level analysis — >
Model Fidelity

and tests within a full-vehicle simulation

___.-:;I"' \—b. OutP . BatterySOC L Tr
- Integrating fluid, thermal, electrical, M” __ 4 — [F]
and mechanical domains is key ; s 2 r R
to assessing system-level performance Simscape| “ — Sl Y — H

MO d eI DC-DC Converter

= Rapid simulations covering a wide range
of drive cycles and ambient conditions :
are needed to evaluate design criteria W

| J |}

Visualization

Drive Cycle Source
FTP75 (2474 seconds)

|

Powertrain Blockset Model
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Products Used

Battery Cooling Network Simscape, Simscape Fluids

Electrical Network Simscape Electrical
Simscape Driveline

Vehicle and Environment Powertrain Blockset

Testing Simulink Test
Parallel Computing Toolbox
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