
1© 2020 The MathWorks, Inc.

July 1st 2020 | EUROPE

Model-Based Engineering for Cybersecurity:

Preparing for UN ECE Regulation and ISO/SAE-21434

2

In the News 5 years ago…

Source: https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks/

3

In the News 5 years ago…

Source: https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks/

4

In the News 5 years ago…

Source: https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-acceleration-hacks/

5

Cybersecurity – Emerging Topic

▪ Growing communication of on-board

systems, sensors and external sites

▪ Car becomes another node of IoT

▪ Security can compromise vehicle safety
Vehicle-to-Infrastructure

Vehicle-to-Vehicle

eCall

Wifi Hotspot

Wireless Key Remote Start

Internet Connection

Bluetooth Connection

Tire Pressure Monitor

On-Board & V2X Communication

„FCA recalls 1.4 Million cars after Jeep hack“

http://www.blogcdn.com/www.autoblog.com/media/2013/02/2014-jeep-cherokee-1.jpg

6

7

Current milestones around regulations, guidelines and standards

11/2019

ENISA publishes

“GOOD

PRACTICES FOR

SECURITY OF

SMART CARS”

06/2020

UN ECE WP.29

discussing adoption02/2020

ISO/SAE 21434 DIS

is published

12/2020

ISO/SAE 21434

FDIS to be

published

06/2020

TODAY

8

▪ UN ECE/TRANS/WP.29/2020/79 regulation proposal on

Cybersecurity

– Uniform provisions concerning the approval of vehicles with regard

to cyber security and of their cybersecurity management systems

(CSMS)

– Relevant for homologation

– Automotive supply-chain to implement the UN Regulation

▪ ISO/SAE 21434 – “Road vehicles – Cybersecurity

engineering”

– Widely seen as reference implementation of a CSMS for E/E

Systems

– Development processes need to be adapted to deal with

Cybersecurity Threats and Risks

Why is this important?

9

ISO/SAE 21434 is aligned with the V model and ISO 26262

System Release

System

Integration and

Test

SW Test

SW

Implementation

SW Design

System Design

System

Requirements
Continuous

System Care
Risk management

(e.g. TARA/HARA)

Security concept /

High level design of

countermeasures

Security specification /

Detailed design of

countermeasures

Implementation
Security related SW component

test and verification

Security related SW

integration test and

verification

Security related

System integration test and

verification

10

11

Embedded Systems Threats and Vulnerabilities

Network

File System

HSM

3rd party

software

User Input

Sensors

HSM: Hardware Security Module

• Incorrect order of network connection

operations

• Tainted data

• TOCTOU (race condition)

• Vulnerable path manipulation

• Use of non-secure temporary file

• Deterministic random output from

constant seed

• Vulnerable pseudo-random

number generator

• Sensitive heap memory not

cleared before release

• Tainted Data

• Execution of a binary/Load

of library from a relative

path can be controlled by an

external actor

• Tainted Data

• Tainted Data

13

Databases collecting security vulnerabilities and exploits

▪ CVE – Common Vulnerabilities & Exposures (cve.mitre.org)

▪ OSVDB – Open Source Vulnerability Database (osvdb.org)

▪ SANS Institute - SysAdmin, Audit, Network, Security (www.sans.org)

▪ OWASP - Open Web Application Security Project (www.owasp.org)

14

CERT and other organizations share secure coding practices

source: https://www.securecoding.cert.org

Validate inputs

Heed compiler warnings and use static and dynamic analysis tools

Architect/Design Software for security policies

15

16

Jeep Hack: Deterministic Random Number Generator
Vulnerability of the in-car Wi-Fi

01-01-1970 01-19-2038today

impossible

production

impossible

time() = integer

2,147,483,647 possibilities (232-1)

Source: http://illmatics.com/Remote%20Car%20Hacking.pdf

http://illmatics.com/Remote%20Car%20Hacking.pdf

17

Model-Based Design - examples of potential Cert C issues *

▪ FLP30-C 2

– Do not use floating-point variables as loop counters

▪ FLP34-C 41

– Ensure that floating-point conversions are within range of the new type

▪ INT30-C 72

– Ensure that unsigned integer operations do not wrap

▪ INT31-C 343

– Ensure that integer conversions do not result in lost or misinterpreted data

*) all user made; found in C code generated from 50 industry models

18

Model-Based Design - examples of potential Cert C issues *
The models have not been designed to comply with Cert C

(violations are specifically relevant if taint data is involved)

▪ FLP30-C 2

– Do not use floating-point variables as loop counters

▪ FLP34-C 41

– Ensure that floating-point conversions are within range of the new type

▪ INT30-C 72

– Ensure that unsigned integer operations do not wrap

▪ INT31-C 343

– Ensure that integer conversions do not result in lost or misinterpreted data

*) all user made; found in C code generated from 50 industry models

20

Early security considerations at model level

▪ Identify ...
– Discouraged blocks

– Non-determinism

– Basic design flaws

▪ Covers:
– Most frequent issues

(according the inhouse study)

– CERT C, CWE and other checks

▪ Result:
– Analyzable model

– Removed basic flaws

Design flaw!

21

Quantifying Security Compliance at Code Level

Code from original example model:

Code from improved example model:

Design improvements reduce late findings in C code and design iterations!

~50% fewer Cert-C violations!

22

Documenting formal cybersecurity requirements

▪ Outcome of Threat

Analysis and Risk

Assessment (TARA) needs

to be documented and

linked to a system or a

component

▪ Each threat can be

mitigated by one or more

requirements

23

Author and manage functional/cybersecurity requirements

Create, organize and view requirements

directly in your models Track implementation and verification status

24

Cybersecurity testing in simulation using attack libraries

▪ Run attacks in simulation

– Attacks can be implemented in Simulink

– Usable for every system model and to

attack almost every signal

– Helps improve effectiveness of intrusion

detection systems (IDS)

▪ Adaptable

– Increase variety of cyberattacks and use

masked parameters for flexibility

– MATLAB Function blocks for more

complex logic

– Testing in SIL, PIL, HIL

Source: https://www.mathworks.com/videos/a-reinforcement-learning-framework-for-smart-secure-and-

efficient-cyber-physical-autonomy-1550746639241.html

25

Model-Based Engineering use cases for ISO/SAE 21434

System Release

System

Integration and

Test

SW Test

SW

Implementation

SW Design

System Design

System

Requirements
Continuous

System Care
Risk management

(e.g. TARA/HARA)

Security concept /

High level design of

countermeasures

Security specification /

Detailed design of

countermeasures

Implementation
Security related SW component

test and verification

Security related SW

integration test and

verification

Security related

System integration test and

verification

Code level

security

verification

Secure code

generation

▪ MISRA C

▪ CERT C

▪ CWE

Secure

modeling

& design

Threat

modeling &

analysis

Smart

fuzz testing

Intrusion

Detection

Reaction

Intrusion

detection &

prevention

26

27

In 2018 41% of the automotive suppliers did not

have an established cybersecurity program or team
Source: Ponemon Study of Automotive Industry Cybersecurity Practices (2018)

Are you planning to implement Cybersecurity

requirements in the near future?

Please contact us with questions

sdavid@MathWorks.com
YES, we’re already working on it

YES, this will be relevant for us
in the next 1-2 years

NO, this is not relevant for us

