Model-Based Engineering for Cybersecurity:

Preparing for UN ECE Regulation and ISO/SAE-21434

July 1st 2020 | EUROPE

MathWorks
AUTOMOTIUE
CONFERENCE 2020

In the News 5 years ago...

HACKERS REMOTELY KILL A JEEP ON THE HIGHWAY—WITH ME IN IT

Miller (left) and Valasek demonstrated the rest of their attacks on the Jeep while I drove it around an empty parking lot. WHITNEY CURTIS FOR WIRED

In the News 5 years ago...

HACKERS REMOTELY KILL A JEEP ON THE HIGHWAY—WITH ME IN IT

Miller (left) and Valasek demonstrated the rest of their attacks on the Jeep while I drove it around an empty parking lot. WHITNEY CURTIS FOR WIRED

In the News 5 years ago...

HACKERS REMOTELY KILL A JEEP ON THE HIGHWAY—WITH ME IN IT

Miller (left) and Valasek demonstrated the rest of their attacks on the Jeep while I drove it around an empty parking lot. WHITNEY CURTIS FOR WIRED

Cybersecurity – Emerging Topic

- Growing communication of on-board systems, sensors and external sites
- Car becomes another node of IoT
- Security can compromise vehicle safety

http://www.blogcdn.com/www.autoblog.com/media/2013/02/2014-jeep-cherokee-1.jpg

Current milestones around regulations, guidelines and standards

incident response

9.4 Updates

10.4 Tool Management

of time. The Contracting Parties having expressed a position on this paragraph volunteered to further discuss after the session and to prepare a document solving the issue on para. 5.3. and subparagraphs complementing this document. This document is bearing the official symbol ECETRANS/WP.29/202097.

8.4 Verification and validation

8.5 Release for post-development

10. Supporting processes

Figure 1 - ISO/SAE 21434 Overview

10.3 Distributed cybersecurity activities

7.4 Cybersecurity goals

7.5 Cybersecurity Concept

10.2 Management system

ENISA GOOD

SMART CARS

NOVEMBER 2019

ICS > 43 > 43.040 > 43.040.15 **ISO/SAE DIS 21434** Road vehicles — Cybersecurity engineering GENERAL INFORMATION PREVIEW echnical Committee: ISO/TC 22/SC 32 Electrical and electronic components and general system aspect LIFE CYCLE REVISIONS / CORRIGENDA

12/2020

FDIS to be

published

Why is this important?

- UN ECE/TRANS/WP.29/2020/79 regulation proposal on Cybersecurity
 - Uniform provisions concerning the approval of vehicles with regard to cyber security and of their cybersecurity management systems (CSMS)
 - Relevant for homologation
 - Automotive supply-chain to implement the UN Regulation
- ISO/SAE 21434 "Road vehicles Cybersecurity engineering"
 - Widely seen as reference implementation of a CSMS for E/E Systems
 - Development processes need to be adapted to deal with Cybersecurity Threats and Risks

ISO/SAE 21434 is aligned with the V model and ISO 26262

Embedded Systems Threats and Vulnerabilities

- Incorrect order of network connection operations
- Tainted data

- TOCTOU (race condition)
- Vulnerable path manipulation
- Use of non-secure temporary file

- Deterministic random output from constant seed
- Vulnerable pseudo-random number generator
- Sensitive heap memory not cleared before release

Tainted Data

3rd party software

Tainted Data

User Input

Tainted Data

HSM: Hardware Security Module

Databases collecting security vulnerabilities and exploits

- CVE Common Vulnerabilities & Exposures (cve.mitre.org)
- OSVDB Open Source Vulnerability Database (osvdb.org)
- SANS Institute SysAdmin, Audit, Network, Security (www.sans.org)
- OWASP Open Web Application Security Project (www.owasp.org)

Rank	Score	ID	Name
[1]	93.8	CWE-89	Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
[2]	83.3	<u>CWE-78</u>	Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
[3]	79.0	CWE-120	Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
[4]	77.7	CWE-79	Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
[5]	76.9	CWE-306	Missing Authentication for Critical Function
[6]	76.8	CWE-862	Missing Authorization
[7]	75.0	CWE-798	Use of Hard-coded Credentials
[8]	75.0	CWE-311	Missing Encryption of Sensitive Data
[9]	74.0	CWE-434	Unrestricted Upload of File with Dangerous Type
[10]	73.8	CWE-807	Reliance on Untrusted Inputs in a Security Decision
[11]	73.1	CWE-250	Execution with Unnecessary Privileges

CERT and other organizations share secure coding practices

source: https://www.securecoding.cert.org

BEREICHSVERKNÜPFUNGEN

- Dashboard
- Home
- Android
- ☐ C++
- 🖺 Java
- Perl

Top 10 Secure Coding Practices

Erstellt von Robert Seacord, zuletzt geändert von Robert Seacord (Manager) am Mär 01, 2011

Top 10 Secure Coding Practices

Validate inputs

Validate input from all untrusted data sources. Proper input

validation can eliminate the vast majority of software vulnerabilities. Be

suspicious of most external data sources, including command line

arguments, network interfaces, environmental variables, and user controlled

Heed compiler warnings and use static and dynamic analysis tools

available for your compiler and eliminate warnings by modifying the code [C MSC00-A, C++ MSC00-A]. Use static and dynamic analysis tools to detect

Architect/Design Software for security policies

software architecture

and design your software to implement and enforce security policies. For

01-19-2038

Polyspace Code Verifier

Jeep Hack: Deterministic Random Number Generator

Vulnerability of the in-car Wi-Fi

```
production
▼ Source
wifi.c ×
                                                                                                 today
                                                                    01-01-1970
  18
  19
              return v3;
                                                                              impossible
  20 }
                                                                                                  time() = integer
      char *get password()
                                                                                     2,147,483,647 possibilities (2<sup>32</sup>-1)
  23
              int c max = 12;
              int c min = 8;
 26 4
              unsigned int t = time(((void *)0));
  27
              srand (t);
              unsigned int len = (rand() % (c_max - c_min + 1)) + c_min;
 Defect: ID 2: 'rand' is a cryptographically weak PRNG.
 To make your program more secure, use 'CryptGenRandom' (Windows) or 'RAND_bytes' (OpenSSL) instead.
  32
                      unsigned int v10 = rand();
  33
                      int v11 = convert byte to ascii letter(v10 % 62);
                      password[v9] = v11;
  34
```

Source: http://illmatics.com/Remote%20Car%20Hacking.pdf

v9++;

impossible

Miller (left) and Valasek demonstrated the rest of their attacks on the Jeep while I drove it around an empty parking lot. FO WHITNEY CURTIS FOR WIRED

Model-Based Design - examples of potential Cert C issues *

FLP30-C

Do not use floating-point variables as loop counters

FLP34-C

Ensure that floating-point conversions are within range of the new type

INT30-C

Ensure that unsigned integer operations do not wrap

INT31-C

Ensure that integer conversions do not result in lost or misinterpreted data

41

72

343

Model-Based Design - examples of potential Cert C issues *

The models have not been designed to comply with Cert C (violations are specifically relevant if taint data is involved)

FLP30-C

Do not use floating-point variables as loop counters

FLP34-C

Ensure that floating-point conversions are within range of the new type

INT30-C

Ensure that unsigned integer operations do not wrap

INT31-C

Ensure that integer conversions do not result in lost or misinterpreted data

41

72

343

Early security considerations at model level

- Identify ...
 - Discouraged blocks
 - Non-determinism
 - Basic design flaws
- Covers:
 - Most frequent issues (according the inhouse study)
 - CERT C, CWE and other checks
- Result:
 - Analyzable model
 - Removed basic flaws

Quantifying Security Compliance at Code Level

Code from original example model:

Design improvements reduce late findings in C code and design iterations!

Documenting formal cybersecurity requirements

- Outcome of Threat
 Analysis and Risk
 Assessment (TARA) needs
 to be documented and
 linked to a system or a
 component
- Each threat can be mitigated by one or more requirements

Author and manage functional/cybersecurity requirements

Create, organize and view requirements directly in your models

Track implementation and verification status

Cybersecurity testing in simulation using attack libraries

Run attacks in simulation

- Attacks can be implemented in Simulink
- Usable for every system model and to attack almost every signal
- Helps improve effectiveness of intrusion detection systems (IDS)

Adaptable

- Increase variety of cyberattacks and use masked parameters for flexibility
- MATLAB Function blocks for more complex logic
- Testing in SIL, PIL, HIL

Source: https://www.mathworks.com/videos/a-reinforcement-learning-framework-for-smart-secure-and-efficient-cyber-physical-autonomy-1550746639241.html

Model-Based Engineering use cases for ISO/SAE 21434

Clear Filters x Search File Exchange

File Exchange -

Trial soft

File Exchange

MATLAB Central ▼ Files Authors My File Exchange Contribute About

☐ Community

Filter by Source

Filter by Category < Clear Categories Data Import and Analysis

Data Import and Export

Preprocessing Data

Descriptive Statistics

Visual Exploration

Filter by Type

Toolboxes

☐ Functions

MATLAB

Apps

Large Files and Big Data

Encryption / Cryptography

Filter by Product Family

80

1.101

76

33

63

173

80

75

73

80 RESULTS

Encryption / Cryptography (80)

Image Encryption

This GUI does the Image Encryption of any RGB, Gray image of different formats.

Advanced Encryption Standard (AES)-256

Advance Encryption Standard-256 encryption and decryption using 256-bit hexadecimal key and 128-bit

Matlab AES Encryption **Decryption Example**

Advanced Encryption Standard helper class.

Basic RSA Public Key encryption and signing to demonstrate the

45 Downloads 1 ***

principle.

42 Downloads 📵 🛚 🙀

Data Encryption Standard (DES)

The last generation of encryption standard, good for cryptography study and cipher design.

30 Downloads 1

Steganography using LSB

Picture Encryption and Decryption

This algorithm decrypts and encrypts images based on keys

and Decryption with

MATLAB aui auide

Caesar Cipher Encryption

khoor zruog ri pdi Decrypt

Fingerprint Color Image Database .v1

Authors: Dr. Ujwalla Gawande, Kamal Hajari and Yogesh Golhar

22 Downloads 🕕

Caesar Cipher

This is Program for Caesar Cipher encryption Technique.

19 Downloads 19

Q&A

Are you planning to implement Cybersecurity requirements in the near future?

- YES, we're already working on it
- YES, this will be relevant for us in the next 1-2 years
- NO, this is not relevant for us

Please contact us with questions

sdavid@MathWorks.com

