

Enhanced Data Dictionary

for model based automotive production software development

Todd Nordby, Technical Specialist

Agenda

- About
- Background and context
- Our organization's workflow and motivation
- Solution
- Status
- Summary

About NAVISTAR

- Major manufacturer of commercial trucks, buses and defense vehicles
- \$11 billion in revenue in 2019
- Year-over-year market share increase in the last five years
- Customer-centric DNA and industry-leading focus on customer uptime
- Global alliance with TRATON
 Group speeding technology
 innovation and further cost
 improvement

Renewed and expanded entire vehicle portfolio in last three years

On Highway

Medium

Severe Service

Bus

About Global Product Development

- Global Product Development (GPD) is an engineering organization within Navistar
- Controls & Software (C&S) is a GPD group responsible for designing and implementing engine and vehicle electrical and electronics components
 - engine and vehicle control applications
 - embedded software
 - electronic component integration
- Model Based Design (MBD) within Controls & Software
 MBD used extensively for engine and vehicle control applications
 - Algorithm development
 - Production intent software code generation

Agenda

- About
- Background and context
 - Model Based Design (MBD) and Components
 - Data objects
- Our organization's workflow and motivation
- Solution
- Status
- Summary

Component Based Development and Architecture

Create components and make connections

Simulink top model with Reference Models

or AUTOSAR Composition with SWCs

Top-down vs. Bottom-Up workflows

- Top-down
 - Authoring defines components
 - Authoring makes connections
 - Create ARXML
 - Create skeleton models
- Bottom-up
 - Create models independently
 - Generate ARXML
 - Authoring integrates components
 - Authoring connects existing inputs/outputs

Iterating between Simulink model and AUTOSAR Architecture.

Data Management for MBD

- Data objects elaborate graphical designs
 - Define interfaces
 - Describe behavior

Control deployment/code generation

```
# Inport: '<Root>/CCRXP_flgWhlBsdVehSpdCANErr'

# Inport: '<Root>/CCRXP_vWhlBsdVehSpd'

# MultiPortSwitch: '<S17>/Multiport Switch1'

# Sum: '<S47>/Add'

# /

500 if (!Rte_IRead_vwatp_Step_CCRXP_flgWhlBsdVehSpdCANErr_CCRXP_flgWhlBsdVehSpd

()) {

temp_MultiportSwitch_p = ((uint8)VWATP_nrZeroUint8_SC);

temp_MultiportSwitch1_b =

Rte_IRead_vwatp_Step_CCRXP_vWhlBsdVehSpd_CCRXP_vWhlBsdVehSpd();

} else {
```


Agenda

- About
- Background and context
- Our organization's workflow and motivation
 - Functional/algorithm focus vs software implementation
 - Agile architecture development
 - Production code generation
- Solution
- Status
- Summary

Functional focus

• Functional focus vs. software implementation AUTOSAR.Signal => $Rte_IRead_vwatp_Step_uAmbTRaw_uAmbTRaw$

Organic architecture using bottom-up

Can we facilitate "implicit authoring"?
 Ensure I/O Signal names exactly match

Can we grow the system organically?
 Add components as appropriate

Streamlined production code generation

Can we go from functionally focused MBD to production code easily?

How easily can we go from here...

to here?

```
* Inport: '<Root>/CCRXP_flgWhlBsdVehSpdCANErr'
             Inport: '<Root>/CCRXP vWhlBsdVehSpd'
496
            MultiPortSwitch: '<S17>/Multiport Switch1'
497
             Sum: '<547>/Add'
498
499
         if (!Rte IRead vwatp Step CCRXP flgWhlBsdVehSpdCANErr CCRXP flgWhlBsdVehSp
500
501
           temp MultiportSwitch p = ((uint8)VWATP nrZeroUint8 SC);
<u>502</u>
           temp_MultiportSwitch1_b =
<u>503</u>
             Rte IRead vwatp Step CCRXP vWhlBsdVehSpd CCRXP vWhlBsdVehSpd();
504
505
         } else {
```

Agenda

- About
- Background and context
- Our organization's workflow and motivation
- Solution
- Status
- Summary

Simulink Data Dictionary advantages

- Design data management
 - Create and manage data object definitions
 - Specify design data using Model Explorer interface
- Persistent repository
 - Repeated data loading not required
 - Automatically associate design data with model

Simulink Data Dictionary gaps

- Functional focused support (abstraction)
 - Uses data object class not abstract type
 - Includes code generation specifics
- Organic architecture (parallel development and implicit authoring)
 - Doesn't match input/output names explicitly
 - Bottom-up approach possible but integration complicated

Navistar Enhanced Data Dictionary

- Goals
 - Enhance and add functionality
 - User friendly (particularly function developers)
 - Support Controls & Software organization's workflow
- Approach
 - Simulink Data Dictionary as "database"
 - MATLAB Engine API for Java

Data abstraction

Implementation hiding

Simulink guides data management (helpful)

Simulink requires implementation specific knowledge (inconvenient)

Implementation hiding concept

- User enters functional attributes
 - Min, Max, Units, etc.
- Hide and automate deployment requirements
 - Object Class
 - CoderInfo
 - etc.

Implementation hiding details

- Hide and automate deployment requirements
- Directly support production code generation

Functional developer assistance

Consolidated model synchronization
 All missing/extra data objects vs Simulink 1 type at a time

Functional developer assistance

- Typical use case automation
 - Automatically select 'single' datatype on creation (project preference)
 - Fixed-point datatypes automatically defined from slope/offset
 - Boolean datatype automatically sets Min/Max
 - Min/Max checked on data entry

Enable organic & parallel architecture development

- Enable and enforce compatibility
 - Select inputs from other outputs
- Support parallel bottom-up growth
 - Allow manual input creation

油 Proj... 🟻 🗎

Define

Curve

Calibration

Axis

Add Data Object

Implementation considerations

- Duplicate I/O data objects
 - streamlined/independent component development
 - requires integration reconciliation after component implementation
 - supports "dangling inputs" for resolution later

- Simulink Data Dictionary references
 - complete project and coordination required
 - component integration completed at implementation

 "dangling inputs" require immediate external component modification

Current status and beyond

- Initial Simulink Data Dictionary based tool launched Q4-2019
- Initial improvements and support for R2020a added Q2-2020
- Ongoing user feedback improvements in progress
- Currently in use on a production intent project
 - Already supported several vehicle intent software releases
- ToDo
 - Incorporate usability feedback
 - Can we take advantage of more built-in Simulink capabilities?
 - Embedded Coder Dictionary
 - Code Mappings Editor

Summary

- Navistar's Controls & Software group uses Model Based Development (MBD)
 - to facilitate embedded application development by 100's of engineers
 - on 4 projects and growing
 - including 2 projects in production
- Navistar's Enhanced Data Dictionary
 - Supports Controls & Software's functional focused organization
 - Provides robust and streamlined component based workflow
 - Supports parallel component development
 - Eases production code generation

THANK YOU

