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Key Takeaways

= Artificial Intelligence techniques when used in combination with Advanced
Signal Processing algorithms can yield meaningful insights

MATLAB can help you combine the best of Al and Signal Processing
without requiring you to be an expert in either
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Agenda

= Case study 1: Automated semantic segmentation of seismic images
— Introduction to case study data
— Challenges in developing Al models
— How wavelet analysis helps

= Case study 2: Automated P- and S- waves arrival times detection in
earthquake seismograms
— Introduction to case study data
— Challenges in developing Al models
— How wavelet analysis helps

= Conclusion
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Case Study | :
Automated semantic segmentation of seismic images
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Seismic semantic segmentation
Automation of seismic facies labeling
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Source : Daniel Chevitarese et. al., Seismic Facies Segmentation using Deep Learning: AAPG ACE 2018 5
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Seismic survey process

SEISMIC SURVEY DRILLING

Time (ns)
(w) yadeaq

GPR profiling of lake sub-bottom layers
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Case study data
Survey of polar icesheets
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Source : nasa.gov 7
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Case study data

MCoRDS/I — Multichannel Coherent Radar Depth Sounder/Imager*

¥ MCoRDS Aq__,_ai{

o/ Amml’l' 0O .r‘.-,... 7{?
~Ku-band radars

System parameters
* Season 2012 2009

3100 m

*CReSIS. 2018. MCoRDS Data, Lawrence, Kansas, USA. Digital Media. http://data.cresis.ku.edu/

* Operating frequency 180-210 MHz 140-160 MHz

e Pulse Duration 1,3,10 us 1,3,10 us X
Sampling freq 111.11MHz 120 MHz o
Max Tx channels 8 6
Max Rx channels 16 6
Peak Tx Power ~1200W ~800W
A/D resolution 12 bits 12 bits
Min detectable signal -161 dBm -161 dBm e A ™
Noise Figure 5dB 5dB
Platform NASA P3 Twin Otter !

*Gogineni, S., J.-B. Yan, et al., "Bed topography of fast-flowing glaciers and fine-resolution mapping of internal layers", 26th IUGG General Assembly 2015, Prague, 06/22-07/2, 2015.


http://data.cresis.ku.edu/
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Case study data

Develop automated algorithm for labeling the icesheets and bedrock pixels
mcords3 2013 Antarctica P3: "Dome C - Vostok” 20131127 01 032: -1:03:45.6 to -1:09:10.6 GPS

lcesheets
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depth, e =3.15 (m)
Propagation delay (us)

D
o

Bedrock

50

60
0.00 km 9.99 km 19.95 km distance 29.94 km 39.90 km 49.85 km

75.908 S 75.959 S 76.008 S  Jatitude 76.056 S 76.103 S 76.150 S
119.565 E 119.262 E 118.953 E longitude 118.641 E 118.328 E 118.012 E 9
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Developing Artificial Intelligence algorithm for automated labeling
Traditional approach — Did not work ®

Training :
Label Seismic Data J Train D_eepCNN?\Itworks J [ Train Network J
using S
Deployed
model :

‘ Trained Model J

New Data J ‘ Semantic Segmented Data J

Global accuracy of trained model <10% o



Range bins

Why did our model fail?

Let’'s understand the training data
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High dynamic range results in :
« Poor contrast in seismic image
« Bedrock signal power very low

« Al model cannot distinguish icesheet layers and

bedrock
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Normalized single range line plot

2500

Icesheets layers returns
/ >200 dB dynamic range
i
Bedrock return
500 1000 1500 2000
Range bins
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How to detrend this data ?

Some techniques available in
literature :

1. Curve fitting
- Fit low order polynomial
- Fit an exponential function

2. Predictive deconvolution
- Inverse filtering
Result :

Loss in SNR of the bedrock return

Original signal bed SNR =~27 dB
Detrended signal bed SNR = ~20 dB

General model Exp2:

val(x) = a*exp(b*x) + c¥*exp (d¥x)
EXample Coefficients (with 9%5% confidence bounds) :
. . a -336 (-352.2, -319.9)
EXpOnentIa| curve fit » 3.661le-05 (1.381e-05, 5.942e-05)

C
d

(
139.8 (125.1, 154.4)
-0.001847 (-0.002127, -0.001568B)

Normalized single range line plot

0 T T T T
Original
X 1234 Fitted curve
-50 + Y -72.81 Result detrened | -
°
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) "y
§ -150 ) X 1236 |
a w “hm. Y -192.9 X 1441
ﬁ -200 " T Y -218.2 T
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B IMH\
< 250 + 1 .
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Which technique to use ?

Ans: Use wavelets analysis

Wavelet

- A wavelet is a rapidly decaying wave like oscillation with zero f\

mean |
/. [ / \
\ \
o Vo \ o~
. \ ‘ﬂl / .

- Wavelets are best suited to localize frequency content in real S
world signals Vo /

= Availability of a wide variety of wavelets is a key strength of

wavelet analysis Sine wave

4\ MathWorks
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More on wavelets:
Translation and Scaling :
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Introduction to Wavelet Multiresolution Analysis
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Using DWT (Discrete Wavelet Transform) analyze signals into progressively finer octave bands

KEY
90-180Hz DI Level 1/Scale 2 . High Pass Filter
. Low Pass Filter
Fs: 360 Hz S
45-90 Hz D2 Level 2/Scale 4
22-45Hz D3 Level 3/Scale 8 l
A2 ’. 11-22 Hz D4 Level 4 /Scale 16
0-45 Hz _. A3 ’ 5-11Hz 05 || Level5/Sale32
A4
0-22 Hz . N
0-11 Hz . AS *
0-5 Hz
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Signal Preprocessing using Wavelet Multiresolution Analysis
Decompose signal into multiple resolutions using wavelets

4\ Signal Multiresolution Analyzer - Decomposition - modwtmra

DATA

SIGNAL MULTIRESOLUTION ANALYZER

I%I O Work In Samples

Signal © Sample Period -

EII:,I:I Duplicate Wavelet
o Oswperse [ M Gose el _]

Level

b ¢

Decompose  Default  Export

Layout =

TIME DECOMPOSED SIGNALS WAVELET DECOMPOSE  LAYOUT  EXPORT

|

| Data Browser

Decomposed Signals

Higher levels capture high frequencgy trends

detrendSig - [modwtmra]

Level Selection

Lower levels capture signal attenuation profile —_— |

<

Frequencies Relative ude Show
(cycles/sample)]  Energy
Level 1 035-05 0.02%
Level 2 0123-0254  0.02%
Level3 0.0616-0.127 0.03%
Level 4 0.0308-0.0634 0.03%
Levels 0.0154 -0.0317 0.06%
Level& 0.00771 - 0.0158 0.09%
Approx. 0-0.00781 99.75% O

1| Decomposition - modwtmra

1

-1

Level 1
2

N

ILE\.IIE\2
BB

Level 3

5 &

&l

ILEVIE|4
BB

a1

| Reconstructions

originalSig
detrendSig

Reconstruct the signal by combir
higher levels and removing the Io
approx. level

| | | | | | |
200 400 600 BO0 1000 1200 1400 1600 1800 2000
Samples
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Signal Preprocessing using Wavelet Multiresolution Analysis

Results of multiresolution analysis : . Normalized single range line plot
. Detrended
1. SNR of bedrock return is preserved as X 1236 Original
original signal ~27 dB -0 Y -73.99 |
[ J
2. Used sym6 wavelet to preform the —~ 100 H | o |
decomposition =t \} X 1543
5 Y -99.71
3. Same wavelet decomposition method can 2 -150 1 X 1236 i
be applied to all traces = Y -192.9
() ‘
o _ _ N 200t i T -
4. Implement with Signal Multiresolution 2 u
Analysis app S X 1543
https://www.mathworks.com/help/wavelet/ref/signal < -250 - Y -219.8 .
multiresolutionanalyzer-app.html
5. Automate the process by generating code -300 i
directly from the app
L : -350 | | | |
6. Contrast of the seismic image improved 0 500 1000 1500 2000 2500
Range bins

17
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Signal Preprocessing using Wavelet Multiresolution Analysis

Results of multiresolution analysis

Range bins

Echogram before detrending Echogram after detrending
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Developing Artificial Intelligence algorithm for automated labeling
Traditional approach — Did not Work ®

Training :
Label Seismic Data J Train D_eepCNN?\Itworks J [ Train Network J
using S
Deployed
model :

‘ Trained Model J

New Data J ‘ Semantic Segmented Data J

Global accuracy of trained model <10% »
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Developing Artificial Intelligence algorithm for automated labeling
New Wavelets based approach: Al model works ©

& Taing Progress (10201 BE1145)

Training Progress (10-Jan-2018 18:17:15)

Training :

‘ Signal Preprocessing with wavelets J ‘ Label Seismic Data J Train Qeep Networks [ Train Network J
using CNNs

Deployed
model :

»

‘ Signal Preprocessing with wavelets J ‘ Trained Model J

New Data J ‘ Semantic Segmented Data J

Global accuracy of trained model ~ 972%
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Overall result :

Bedrock

Ice sheet

True Class

Icesheet

Bedrock Icesheet
Predicted Class

Bed rock Confusion matrix plot for all pixels

metrics = evaluateSemanticSegmentation(pxdsResults,pxdsTruth)

Evaluating semantic segmentation results
[ 1 1e0%

Elapsed time: €0:00:02

Estimated time remaining: @0:00:00
* Finalizing... Done.

* Data set metrics:

Semantic Segmented Data J

GlobalAccuracy MeanAccuracy MeanIol WeightedIol MeanBFScore

0.90624 0.95085 0.61588 0.87529 0.40652

21
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Summary of case study:

Signal preprocessing helped leverage the latest techniques in Al for seismic
Interpretation

Seismic labeling automation helps increase productivity of seismic
Interpreter ~ >10x

Overall SNR Improvement in signals :

— Multiresolution analysis decreases the dynamic range, helps uncover features in low
SNR scenarios

Echogram before detrending

900
1000

2

5 1100

[}

oD

S

o 1200
1300

1400

900 1000 1100 1200 1300 1400 900 1000 1100 1200 1300 1400
Along-track bins Along-track bins

Improved features of icesheet layers and bed rock )



Poster presented at AAPG ICE2019

Seismic Analysis with Wavelets and Deep Learning
Akhilesh Mishra, Kirthi Devleker, Samvith Rao

MathWorks

Abstract Results and Conclusion

Seismic Reflection analysis is the most common method to obtain subsurface information for reservoir characterization. ° singis rangs ins plot
However, seismic reflection is often distorted by complex salt bodies and other geological structures and its vertical
resolution is often of the order of dozens of meters. In addition, analyzing large amounts of seismic data is a
computationally challenging and time-consuming task. To circumvent these challenges, in this work, we present an
approach using wavelets and deep learning to accelerate seismic analysis tasks.

&

]

i

8

We explore the use of wavelet transforms in conjunction with deep learning for seismic data analysis. The field studies
were done on seismic data from Antarctica ice sheets, and we could clearly identify the interfaces between ice sheet
and bed rock. Qur recent results obtained from this approach are promising to distinguish among different facies,
thereby increasing the productivity of the interpreter by ~10x.

Nomalted powe i)

g 4

= 00 000 1500 2000 2500
Methods R uns
Semantic Segmentafion imape

e ghes

2 Results g
= t_lt | L. = Detrending improved the dynamic range while preserving theE.."’jlj
Signal Enhancement - : I sharp features. & 1200
S A= = SNR of bed rock enhanced. 1200 L
= . | = Semantic Segmentation automatically classifies the ice sheet and 150 =
- o bed rock interface. 180
= Productivity of seismic interpretation improved ~10x per =x T Vs
echogram. 20 A0 G0 E0 100 20 140 160
Along-track bns

Semantic Scgmentation

el iabeing
lce sheet g——— PR PSSP Cusiomizing Reshistis
Bed rock ——— VI
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= Gogineni, 5., 1.-B. ¥an, et al., "Bed topography of fast-flowing glaciers and fine-resalution mapping of internal layers", 26th IUGG General Assembly 2015, Prague,
Czech Republic, 05/22-07/2, 2015.

percival, 0. B, and A T. Walden. Wavelst Methods for Time Series Analysis. Cambridze, UK: Cambridge University Press, 2000,
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Case Study Il :
Automated P- and S-wave arrival times detection In
earthguake seismograms

24
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Picking P- and S-waves arrival times with Al

Automation of labeling of P- and S-wave events

Geophone: Spatal Array

«10 Feature 1

5b A X E;ocmy!ate

0 500 1000 1500 2000 2500 3000 3500 4000
. <10 Feature 2
0 b\/‘wmw 1‘W¢f%~“ AVLFAWAY
-5 ] J
0 500 1000 1500 2000 2500 3000 3500 4000
0* Feature 3
2
O\JMMWW MM ﬂ'w,wﬁ‘
-2
0 500 1000 1500 2000 2500 3500 4Q 00
Time Step

Seismic record of regional earthquake logged by 3C node

°‘\/"WM«WW]&w't‘mwwnwwé R

pre
<1 0'4 Feature 1 . passage

post

S AP ‘
M A

1 1 1 J

0 500 1000 1500 2000 2500 3000 3500 4000

) Y‘m v‘f"’\\y#&f S""&r‘& \h

0 500 1000 1800 2000 2500 3000 3500 4000

9 "".' l & ;#
! ”itfs‘ z& f‘b {Evmm{

| 1 1}

1500 2000 2500 3000 3500 4000
_ Time Step
Deep learning network prediction on unseen record

0 500 1000

Source : Detecting P- and S-wave Arrivals with a Recurrent Neural Network
David Kirschner, Royal Dutch Shell; Nick Howes, Conor Daly, and Joyeeta Mukherjee, Mathworks; Junlun Li, University of Science and

Technology of China (formerly w/ RDSA)

25
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Case study data :
« Earthquake event occurred in Kobe, Japan - January 17, 1995 (January 16 at 20:46 GMT)

« Goal: Develop Al model to automatically label the P- and S-waves

x10% Kobe Orignial Signal

4 | | | | _]

3 —

Vertical Acceleration nm/s2

3 —
| | | | | | | I I |

5 10 15 20 25 30 35 40 45 50
Time (mins)

Data source : NOAA National Geophysical Data Center (2012): Natural Hazard Images Database (Event: January 1995
Hanshin-Awaji (Kobe), Japan Images). NOAA National Centers for Environmental Information. doi:10.7289/V5154F01 .




Developing Al algorithm for automated labeling

Traditional approach — Very challenging

Training :

Deployed
model :

‘ Manually labelled signal — v difficult J

wwwwwww

Time (mins)

‘ New Data J

Train Deep Networks
using RNNs

J [ Train Network J

Kobe Orignial Signal
T T

‘ Trained Model J

w L
S p—

Time (mins)

\ Labeled signal J

Global accuracy of trained model low

4\ MathWorks
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Challenges with traditional Al approach
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[ Training Progress (30-Apr-2019 17:42:24) Training iteration 257 of 2750_..
Training Progress (30-Apr-2019 17:42:24) . 0
Training Time
Labeling the P- and S-waves . e Tz
arrival durations manually is Training Cycle
. Epoch; 12 0f 125
C h al |e n g I n g It:rations per epoch: 22
— Difficult to interpret time domain Manmum terations: 2750
signal Validation
Frequency: MNIA
Patience: MIA
Seismic signals are highly Y
non-stationary and features | | [ i
change quickly with time " —— “ =
Y Learn more
Recurrent Neural Networks for
deep learning, e.g. LSTM o
(Long Short Term Memory) do | ‘| " e
not train on raw data AR
i ‘ ‘ . i

Sample training accuracy plot on non-stationary signals

28



Frequency (mHz)
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Maybe we can localize the events in time and frequency space?
Let’s analyze these signals : Time-frequency method to separate out the localized events

Results of Short Time Fourier Transform (STFT)
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-50

Power/frequency (dB/Hz)
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o
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Power/frequency (dB/Hz)
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_
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5 10 15 20 25 30 35 40

Ti inut
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STFT plot with different time windows
Poor resolution in time and frequency domains ® 29



Other time-frequency techniques

 Modified Fourier based methods also use

sine/cosine waves

« Sine/cosine waves does not do a good job with 100

seismic signals

00 Kobe Smoothed Wigner-Ville Distribution
5

400
300

200

Frequency (mHz)

100

e e

0 10 20 30 40 50
Time (minutes)

Pseudo Wigner-Ville Distribution

500

Frequency (mHz)

Kobe Constant Q-Transform

Frequency (mHz)

0 10 20 30 40 50

Time (mins)
Constant-Q Transform

Kobe Reassigned Spectrogram ‘ MathWorks'

10 15 20 25 30 35 40 45
Time (minutes)

Reassigned Spectrogram

Kobe Fourier Synchrosqueezed Transform
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Fourier Synchrosqueezed Transform 30



Frequency (mHz)

Wavelets again

Continuous wavelet transform Advantages :

>> cwt(kobe, fs) occurring at different scales

4\ MathWorks

« Variable sized windows (scaled wavelets) help capture features

Kobe Scalogram “19". " These scaled wavelets are shifted (translated) along the entire length

12.5 and compared with the signal

events are better resolved in frequency

« High frequency events are better resolved in time and low frequency

Spectrogram Scalogram

time

Time (mins)

Sine wave Wayglet

31
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Use wavelet multiresolution analysis to spilt the components
Decompose with db9 wavelet, reconstruct P-wave with Level 3, Level 5 and Approx.

Signal Multiresolution Analyzer - Reconstructions

I SIGNAL MULTIRESOLUTION ANALYZER

©Q Waork In Sarmples Duplicate Wavelet % w
T || P [ Jw pdd T Delete  Number[s —~] Decompose  Default  Export
Signal ™ Sample Period A Level Layout =
DATA TIME DECOMPOSED SIGMALS WANELET DECOMPOSE | LAYOUT | EXPORT a
| Data Browser | | Decomposition - modwtmra | Reconstructions
Decomposed Signals
kobeP - [modwtmeal Jpli— . . . . .  x10°
kobes - [modwtmra] = 5l
E o n o1 kobe
5,0 —— ko be P
- 4 - l‘ (=3
T (1)
4
13 1
T
& e e e i ]
— ol i
-4l : \ : : \ \
af : T : : T T
o oot 1
T
g 0 rekine S i o]
— ot 4
. 4510 : : .
- : af . T . . T T
evel Selection < 5
K] u:
Frequencies Relative Include Show E ol
{cycles/sample)|  Energy i
*
Lewvel 1 0.25-05 1.18% |:| Fin T T T T T r
Level2 0124-0251  11.39% I 22
Level 3 0.0622-0126 9.85% g0 St L
—
Level 4 0.0311-0.0828 59.53% O 'i'
Level § 0.0156-0.0314 6.45% ur i . . . : . .
Approx. 0-0.0158 11.47% % ol
52t
E ok N i A
= _i i | ] | | ] ] -4 : . . .
0 500 1000 1500 2000 2500 3000 0 500 1500 2000 2500 3000
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Use wavelet multiresolution analysis to spilt the components
Dgcom ose with db9 wavelet, reconstruct R-wave with Level 4

Signal Multiresolution Analyzer - Reconstructions - O >

I SIGNAL MULTIRESOLUTION ANALYZER

Q Work In Samples E:]:I Duplicate Wavelet @ v
Load |[deeiaea [ we Add U0 Delete Number(s = Decompose | Default = Export
Signal “ Sample Period - Level Layout -
DATA TIME DECOMPOSED SIGHNALS WAVELET DECOMPOSE | LAYOUT | EXPORT a
| Data Browser | | Decomposition - modwtmra | _J Reconstructions 1
Decomposed Signals
kobeP - [modwtmra] . <10t . . . . . . «10%
N ] 5
sol ] kobe
E kabaP
21 1 4 s b2
_4\10_. . . ! ! ! . 0
af T T T T T ._
St :
E 1] YRRPRER o pep ooy stk e sithols el i
Il |
- . . . . . .
af T T T T T ._
o oar :
— ot ]
] B | | | | | | I
Level Selection - ;' 1
E 0_ ey - ey ]
Frequencies Relative Include Show E 2l ) |
(cycles/sample)|  Energy -4 . . . | | |
£
Level 1 025-05 1.18% O af T T T T T 7
Level 2 0.124-0251  11.39% O 3 2r 1
Level 3 0.0622-0.126 8.95% O & 0r ]
—
Level 4 0.0311-0.0628 59.52% 'i' , , . . | |
Level 5 0.0156-0.0314 6.48% O Prli— : . : : :
Approx.  0-0.0156 11.47% O X ol ]
5 2r i
230 '
_i- | | | | | |- 4 i i I I i i
) 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
< > Fd Samples
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Normalized Vertical Acceleration
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Magnitude
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Normalized Vertical Acceleration
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0.4

0.2
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Cwit of reconstructed signals

Kobe Decomposed Signal

I I I 7 I
SWave
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: | ll ' ““"“' aditly "'
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P- and S-waves are separated
Signal lengths are same, energies are preserved
Removed the noise in data (Level 2 and Level 1)
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Kobe Scalogram P wave
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Kobe Scalogram S wave
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Developing Al algorithm for automated labeling

Traditional approach — Very challenging

Training :

Deployed
model :

‘ Manually labelled signal — v difficult J

wwwwwww

Time (mins)

‘ New Data J

Train Deep Networks
using RNNs

J [ Train Network J

Kobe Orignial Signal
T T

‘ Trained Model J

w L
S p—

Time (mins)

\ Labeled signal J

Global accuracy of trained model low

4\ MathWorks
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Developing Al algorithm for automated labeling
New Wavelets based approach: Al model works ©

nal

Training : WMWWWWM“WM WMMM\WMW

3 5

B 11715)
Training Progress (10-Jan-2018 18:17:15)

nnnnnnnnn

Train Deep Networks [ Train Network J
using CNNs

‘ Signal Preprocessing with wavelets J

Deployed
g
B T T T T = T T T m - - |

model :
- 3 : 3r
3tk b 1 ~
. = 2r
o~ . £
22k J 3 <
£ 5
< R SRty 2 - S 1
S 1 - ©
2 o
3 ; 8
o f : g°
= - 2 S
£-1F q o > '54*
2 : : =
2F —
3
. . . A . . .

3+ |

‘ Trained MOdeI J 5‘ 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 5‘0
Time (mins)

‘ New Data J ‘

0 25 30
Time (mins)

Labeled signal J
Global accuracy of trained model v high
3
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Conclusion

= Use wavelets for analyzing real-world seismic signals

- Wavelet techniques such as multiresolution analysis can be very powerful
for signal analysis and decomposition

= MATLAB provides single platform for signal analysis/preprocessing and
developing and deploying Al models
— Need not be signal processing expert.
— Easy to use GUI-based apps to help you get started

38



Image Analysis
wavedec2

waverec2

What else in Wavelets ? —

Denoising

4\ MathWorks

2-D wavelet decomposition

2-D wavelet reconstruction

2-D approximation coefficients

2-D detail coefficients

2-D Haar wavelet transform

Inverse 2-D Haar wavelet transform

Kingsbury Q-shift 2-D dual-tree complex wavelet transform
Kingsbury Q-shift 2-D inverse dual-tree complex wavelet transform
First-level dual-tree biorthogonal filters

Kingsbury Q-shift filters

Dual-tree and double-density 2-D wavelet transform

Inverse dual-tree and double-density 2-D wavelet transform
Analysis and synthesis filters for oversampled wavelet filter banks
Extract dual-tree/double-density wavelet coefficients or projections
Reconstruct single branch from 2-D wavelet coefficients

Wavelet packet decomposition 2-D

Wavelet packet reconstruction 2-D

haart2
ihaart2
- . . . dualtres2
Discrete Multiresolution Analysis
idualtree?
Signal Analysis gbiorthfilt
wavedec 1-D wavelet decomposition qorthuavf
. dddtree2
waverec 1-D wavelet reconstruction
idddtres2
dwtfilterbank Discrete wavelet transform filter bank
dtfilters
dualtres Kingsbury Q-shift 1-D dual-tree complex wavelet transform dddtraacts
idualtree Kingsbury Q-shift 1-D inverse dual-tree complex wavelet transform wrcoef?
haart Haar 1-D wavelet transform wpdec2
ihaart Inverse 1-D Haar wavelet transform wprac2
mlpt Multiscale local 1-D polynomial transform wpcoef
imlpt Inverse multiscale local 1-D polynomial transform uprcoef
B besttres
dddtree Dual-tree and double-density 1-D wavelet transform
- depo2ind
idddtres Inverse dual-tree and double-density 1-D wavelet transform
ind2depo
mlptrecon Reconstruct signal using inverse multiscale local 1-D polynomial trar
wrcoef Reconstruct single branch from 1-D wavelet coefficients
dwpt Multisignal 1-D wavelet packet transform
idwpt Multisignal 1-D inverse wavelet packet transform
wpdec
wprec Machine Learning and Deep Learning
upcoef waveletScattering Wavelet time scattering
uprcoef waveletScattering2 Wavelet image scattering
besttree cwtfilterbank Continuous wavelet transform filter bank
wpspectrum

Filter Banks

Orthogonal and Biorthogonal Filter Banks

dwtfilterbank Discrete wavelet transform filter bank
bicrwavf Biorthogonal spline wavelet filter
biorfilt Biorthogonal wavelet filter set

coifwavf Coiflet wavelet filter

dtfilters Analysis and synthesis filters for oversampled wavelet filter ba,
dbaux Daubechies wavelet filter computation
dbwavf Daubechies wavelet filter

fejerkorovkin Fejér-Korovkin wavelet filters

orthfilt Orthogonal wavelet filter set

rbiowavf Reverse biorthogonal spline wavelet filters
gmf Scaling and Wavelet Filter

wdenoise Wavelet signal denoisiiy
wdenoise? Wavelet image denoising
cmddenoise Interval-dependent denoising
mlptdenoise Denoise signal using multiscale local 1-D polynomial transform
wpdencmp Denoising or compression using wavelet packets
measerr Quality mefrics of signal or image approximation
wdencmp Denoising or compression
wnoisest Estimate noise of 1-D wavelet coefficients
wvarchg Find variance change points
wnoise Noisy wavelet test data
ddencmp Default values for denoising or compression
thselect Threshold selection for denoising
wpthcoef Wavelet packet coefficients thresholding
wthcoef 1-D wavelet coefficient thresholding
wthcoef2 Wavelet coefficient thresholding 2-D
withresh Soft or hard thresholding

Compression
wcompress True compression of images using w~
wdencmp Denoising or compression
wpdencmp i
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Thank You!

Akhilesh Mishra
Email : amishra@mathworks.com

LinkedIn :

https://www.linkedin.com/in/akhile
sh-mishra-b44b50121/
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