<) The Mathorks MATLAB&SIMULINK

Moving MATLAB® Algorithms into Complete
Designs with Fixed-Point Simulation and

Code Generation

Houman Zarrinkoub, PhD.
Product Manager

Signal Processing Toolboxes
The MathWorks Inc.

MathWorks

Aerospace and Defense Conference '07

© 2007 The MathWorks, Inc.

<} The MathWorks MATLAB&SIMULINK

Outline

Challenges in fixed-point signal processing
Traditional design workflow

Advantages of Model-Based Design workflow
= Streamlined Float-to-fixed conversion

= Acceleration of fixed-point simulation

= Automatic C code generation

Demo
Summary

MathWorks
Aerospace and Defense Conference '07

<) The Mathorks MATLAB&SIMULINK

Fixed-point signal processing applications

= Tasks
= Design and analyze fixed-point algorithms
= Verify fixed point implementations

= Hardware targets
= FPGA or ASIC
= Fixed-point DSP chip

MathWorks
Aerospace and Defense Conference '07

<} The MathWorks MATLAB&SIMULINK

Traditional Development flow

Requirements and Design Implementation Test and
Specifications Verification

.

a~

3
6
&

MathWorks o
Aerospace and Defense Conference '07

¥ The MathiWorls MATLAB&SIMULINK

Multiple truths in traditional workflows

Re-implement as you go down the level of abstraction

. e e . . Hardware
Algorithm specification Software simulation . €
implementation
| | |

Equations Assembly code

Block diagrams C/C++ code VHDL/Verilog code!
M-code

MathWorks
Aerospace and Defense Conference '07

<) The MathWorks MATLAB&SIMULINK

Examine a fixed-point algorithm design

1. Set-up simulation flow MATLAB
2. Express your floating-point algorithm
= Focus on algorithmic integrity, proof of concept

3. Simulate (floating-point)
= [terate on algorithm trade-offs
= Validate against requirements

4. Convert design to fixed-point C/C++
= Focus of design viability based on implementation constraints
5. Simulate (fixed-point)

= |terate on implementation trade-offs
= Validate against original requirements

6. Generate code for implementation

7. Validate and verify design after deployment Assembly

or HDL

MathWorks
Aerospace and Defense Conference "07 n

<} The MathWorks MATLAB&SIMULINK

Problems with traditional workflow

= Multiple truths (Copies of same algorithm)

= Floating-point M code
= Floating-point C code
= Fixed-point C code

= Assembly code

= Verilog/VHDL code

= Error-prone process
= Using different tools
= Exchange data across tools
= Multiple update/test of code

MathWorks
Aerospace and Defense Conference '07

') The MathWorks

MATLAB&SIMULINK

Model-Based Design Workflow

Requirements and

Specifications
&

Continuous Verification

Design

Simulation

- Reduces “real” prototypes

- Systematic “what-if”
analysis

Executable models
- Unambiguous
- Only “one truth”

Aerospace and Defense Conference "0/

Test and
Verification

oM

Model Elaboration

Implementation

L

e _.41

Test with Design
- Detects errors

- Minimizes coding earlier
errors

Automatic code
generation

<) The MathWorks MATLAB&SIMULINK

Examine a fixed-point algorithm design

1. Set-up simulation flow

: : : MATLAB
2. Express your floating-point algorithm 2
= Focus on algorithmic integrity, proof of concept Simulink

3. Simulate (floating-point)
= [terate on algorithm trade-offs
= Validate against requirements

4. Convert design to fixed-point
= Focus on design viability based on implementation constraints

5. Simulate (fixed-point)
= |terate on implementation trade-offs
= Validate against original requirements

6. Generate code for implementation
7. Validate and verify design after deployment

MathWorks
Aerospace and Defense Conference "07

<) The MathWorks MATLAB&SIMULINK

Advantages of Model-Based Design workflow

Maintain One Truth
= One Iintegrated design environment
MATLAB benefit:

= Integrated visualization, analysis & design
No sacrifice of simulation speed
Automatic path to implementation

MathWorks
Aerospace and Defense Conference '07

<} The MathWorks MATLAB&SIMULINK

How does Model-Based Design makes fixed-point
design faster and easier?

= Streamline process of converting your MATLAB algorithms to fixed-
point

= Simulate fixed-point algorithms with large data sets at compiled-C-code
speed

= Integrate with system-level design in Simulink

= Generate embeddable C code for implementation with Real-Time
Workshop®

MathWorks
Aerospace and Defense Conference '07

<} The MathWorks MATLAB&SIMULINK

Streamlined floating-to-fixed conversion: introducing

= Turn on the logging mode

= Set data type override parameters

= QObserve dynamic range of variables in your M-code

= Set the best fixed-point attributes to avoid overflow/underflow & large
guantization errors

«) MATLAB 7.4.0 (R2007a) =10] x|

File Edit Debug Desktop wWindow Help

o To get skarked, seleck MATLAR Help or Demas From the Help menu, b

>> resetifipref) : ;I
>» Lipref ('LoggingMode','an'):

>» fipref ('DataTypeCwverride!, 'Soaledboukles')
>> logreportib,a,x,v,acc)

minlog maxlog lowerbound upperbound noverflows nunderflows

2] 0.29z22077 0.5857549 -1 0.9999595 o o

a o 1 -2 1.999939 o o

X —-0.929949507 0.2999535 -1 0.2999535 a 7

v -0.9555664 0.9640195 -1 0.9999595 o o

aco -1 0.9999595 -1 0.9999595 17 1
o5 | =
4 5tart| W,ﬁ

NGTVVOrKs

Aerospace and Defense Conference '07

‘.v‘ The MathWorks MATL AB@(&SIMULINK@

Tools for scaling a fixed-point variable

Steps involved with dynamic range analysis to convert a design into fixed-point

Compute the range based on the min/max logs
Compute the integer part to fit variable within range
Compute the fraction length as the rest of bit budget
Construct the fixed-point numeric type object

honE

J MATLAB 7.4.0 (R2007a) =10] x|

File Edit Debug Desktop Window Help

o To get skarted, select MATLAR Help or Demos From the Help menu, b4

>» fipref (' loggingmode','on'):;

> A = max(abs(double (minlogix))) abs(double(maxlogi(=xi)l);

*> integer part = ceil{log (4] ;

> word length =3Z;: iz =signed=1;

#» fraction length = word length - integer part - double(logical (is signed)):
s r = numerictype(is_signed, word length, fraction length):

el

4\ Start | GVRL |,

MathWorks
Aerospace and Defense Conference '07

‘.v‘ The MathWorks MATL AB@(&SIMULINK@

Fixed-point acceleration:
Introducing new function

= Fast simulation through code generation

= Automatic generation of C-MEX function from M-function

= M-code confined to embedded MATLAB language subset

= Compile C-code execution speed (beyond 100x acceleration in

<) MATLAB 7.4.0 (R2007a) = |EI|5|
File Edit Debug Desktop Window Help
0 To get starked, seleck MATLAE Help or Demas Ffrom the Help menu. x
’ =]
emlmex foo -eg { single (D), double(0) 3}
To create a C-MEX function from an M-function har.m which does not take
any inputs, nawing the output file xbar, use:
emlwex -o xbar bar
See also mex.
i ﬁ
ditartl YR 4
MathWorks

Aerospace and Defense Conference '07

<} The MathWorks MATLAB&SIMULINK

Integrate MATLAB design with Simulink

<) MATLAR (O] x]

File Edit “iew ‘web ‘Window Help

0 D‘ e S | 1] | |CurremD|remory|H\D cumentsi Coe R1214DSL =
Co

for EbNo = Z:.1:6, = 'system'), e
Aqu fen v P

21l files

fi#h 2d=l.mdl

@ adsl build.mdl = |
G s L o Embedded
MATLAB Function

Click here and drag to move this windov..

=0l x|

a X

Change parameters and run Simulink®

1
2 % caloculates a statistical mean and a standard . .

: % deviation for the walues in vals. Slmulatlons from MATLAB

6 — len = lengthiwals):

7 - rmean = avgiwvals,len);

g8 - stdev = sgrtisum(| (vals-avg(vals,len)).”2))/len):

== lot (vals, '-+'): .

o T | Embedded MATLAB Function

11 - function mwean = avglarray,size)

Bl o - oumierrev)/sizes Integration of Embedded MATLAB Functions in

Simulink

Ready Ln 12 Col 24 v

MathWorks
Aerospace and Defense Conference '07

<) The MathWorks MATLAB&SIMULINK

Automatic fixed-point C code generation

=R
Rk ;I
Back E—— a24 S® Video Processing Blockset ZD Resize (svipresize) — '« - - - -
N | Enabled via Simulink Fixed-
A9 FS% Perform on—the-fly interpolation =7
Contents ao7 ine32 T holdIntD; 1
Smggl ass int32_ T accumd=0, accum=07 p0|nt
Tist of inserted a2 :?.nt.SZ_T acoumd ;
=is L el o0 int3z T prod: .
M 201 int,_T_er, col,indx = 0, ind=xDst = 0O; ReaI-TIme Workshop®
Eemove Loz S*% Firat resize along x direction. *°
highlighting 203 for (col = 0; col < 66:; col++) { . ®
204 int T floorPos, intPart,nextIndx; R I_T W k h p
Subsystem§ e e e ea Ime Or S O
Code mapping 208 accwmd = rul S32 S32 S32 Sreé sat near (holdInto,
Clode reuse 207 wipstabilize fixpt_=&l11_FP.Resize YFReciproc) Embedded Coder
exceptions 208
209 holdIntd = ASE (10, scciand) ; - -
Generat_ed Soure Sie floorFos = holdIntd; - Supports up to 32_b|t flxed_
tt nonfinite.c 211 intPart = floorPos+18;
vigstabﬂize ﬁ)_(pt al 21z nextIndx = (floorPos < 21) 7 incParc+1S:incFParctc; .
cipsisbiie ot al] 523 point numbers
A . 214 ACCUM WEG 532 332 SAT (accumd, FIXEFIX 532 532 SL10 Sn
wipstabilice fizpt al 03K e How we calculate gFracPart = 1 — FracPact =/
bt nonfinite b 18 S* Linear Interpolation. =7 U I t. C 1 t
rnoedel b 217 holdIntd = 1; SeS On y na IVe In eger
=21F
fwiypes b 219 sccwmz = FIXZFIX S32_S32_ SL10_SAT (holdIntd) : data t eS
wipstabiire fizpt al sz ACCUM NEG 532 532 SAT(accwn?, accumd) yp
v‘i}gstabi.lize ﬁ}_{pt al 221 for (row = 0; row < 15; row++) {
wipstabilize fispt al 22 :?.nt._T :?.nderc = row+intPart:
- — 923 int T indxI = indx+row:
vipstabilize fipt al L=}=F] acownd — mul 532 532 532 ST sat near | (int32 T)rch
225 ACCUmE) 2 il
| | ol | >
ok LCancel Help | Al |

MathWorks
Aerospace and Defense Conference '07

<) The MathWorks MATLAB&SIMULINK

Hands-on Demonstration

1. Implement the algorithm with floating-point data types in M.

2. Convert to fixed-point data types in M and run with default settings;
observe scaling issues!

3. Log the full numerical range of variables (data logging and data type
override)

4. Use the logged minimum and maximum values to set the fixed-point
scaling.

5. Validate the fixed-point solution interactively.

6. Convert M to MEX using EMLMEX function for fast simulation and large
test-set verification.

7. Convert M to C in Simulink Embedded MATLAB Function block with
Real-Time Workshop for embedded implementation.

MathWorks
Aerospace and Defense Conference '07

<} The MathWorks MATLAB&SIMULINK

For more information

= Fixed-point signal processing webinars

= Fixed-Point Programming in MATLAB
http://www.mathworks.com/cmspro/req11440.html?eventid=32477

= Fixed-Point Signal Processing with MATLAB and Simulink
http://www.mathworks.com/cmspro/reql12157.html?eventid=35522

= About MATLAB and Simulink signal processing
products

http://www.mathworks.com/products/product listing/index.html

= Relevant product demos
http://www.mathworks.com/products/demos/index.html

= User-contributed examples in MATLAB Central
http://www.mathworks.com/matlabcentral

MathWorks
Aerospace and Defense Conference '07

http://www.mathworks.com/cmspro/req11440.html?eventid=32477
http://www.mathworks.com/cmspro/req12157.html?eventid=35522
http://www.mathworks.com/products/product_listing/index.html
http://www.mathworks.com/products/demos/index.html
http://www.mathworks.com/matlabcentral

<) The MathWorks MATLAB&SIMULINK

Summary

Model-based design

= Single-truth, integrated design environment for development of a
design from idea all the way to realizable implementation

Benefits

. Integrated modeling, simulation and prototyping for signal
processing systems

o Easy conversion to fixed-point data types and trade-off analyses
= Automatic generation of C-code for DSPs

n Construct test harnesses for real-time hardware verification

MathWorks
Aerospace and Defense Conference '07

	Moving MATLAB® Algorithms into Complete Designs with Fixed-Point Simulation and Code Generation
	Outline
	Fixed-point signal processing applications
	Traditional Development flow
	Multiple truths in traditional workflows
	Examine a fixed-point algorithm design�Traditional workflow
	Problems with traditional workflow
	Model-Based Design Workflow
	Examine a fixed-point algorithm design�Model-based Design workflow
	Advantages of Model-Based Design workflow
	How does Model-Based Design makes fixed-point design faster and easier?
	Streamlined floating-to-fixed conversion: introducing Data-type override
	Tools for scaling a fixed-point variable�Data logging
	Fixed-point acceleration: �introducing new emlmex function�
	Integrate MATLAB design with Simulink�Embedded MATLAB Function block
	Automatic fixed-point C code generation �Real-Time Workshop
	Hands-on Demonstration
	For more information
	Summary

