
©
20

07
 T

he
 M

at
hW

or
ks

, I
nc

.

® ®

Moving MATLAB® Algorithms into Complete
Designs with Fixed-Point Simulation and

Code Generation

Houman Zarrinkoub, PhD.
Product Manager
Signal Processing Toolboxes
The MathWorks Inc.

2

® ®

Outline

Challenges in fixed-point signal processing
Traditional design workflow
Advantages of Model-Based Design workflow

Streamlined Float-to-fixed conversion
Acceleration of fixed-point simulation
Automatic C code generation

Demo
Summary

3

® ®

Fixed-point signal processing applications

Tasks
Design and analyze fixed-point algorithms
Verify fixed point implementations

Hardware targets
FPGA or ASIC
Fixed-point DSP chip

4

® ®

Text-based
- Prevents rapid

iteration

Physical prototypes
- Incomplete and

expensive

Manual coding
- Introduces human

error

Traditional testing
- Errors found

too late in the
process

Design Implementation Test and
Verification

Requirements and
Specifications

Traditional Development flow

5

® ®

Multiple truths in traditional workflows

Algorithm specificationAlgorithm specification Software simulationSoftware simulation Hardware
implementation

Hardware
implementation

Equations
Block diagrams

M-code

Equations
Block diagrams

M-code
C/C++ codeC/C++ code

Re-implement as you go down the level of abstraction

Assembly code
VHDL/Verilog code

Assembly code
VHDL/Verilog code

6

® ®

Assembly
or HDL

C/C++

MATLAB1. Set-up simulation flow
2. Express your floating-point algorithm

Focus on algorithmic integrity, proof of concept
3. Simulate (floating-point)

Iterate on algorithm trade-offs
Validate against requirements

4. Convert design to fixed-point
Focus of design viability based on implementation constraints

5. Simulate (fixed-point)
Iterate on implementation trade-offs
Validate against original requirements

6. Generate code for implementation
7. Validate and verify design after deployment

Examine a fixed-point algorithm design
Traditional workflow

7

® ®

Problems with traditional workflow

Multiple truths (Copies of same algorithm)
Floating-point M code
Floating-point C code
Fixed-point C code
Assembly code
Verilog/VHDL code

Error-prone process
Using different tools
Exchange data across tools
Multiple update/test of code

8

® ®

Design ImplementationRequirements and
Specifications

Test and
Verification

Model-Based Design Workflow

Executable models
- Unambiguous
- Only “one truth”

Automatic code
generation
- Minimizes coding

errors

Test with Design
- Detects errors

earlier

Simulation
- Reduces “real” prototypes
- Systematic “what-if”

analysis

Model ElaborationContinuous Verification

9

® ®

MATLAB
&
Simulink

1. Set-up simulation flow
2. Express your floating-point algorithm

Focus on algorithmic integrity, proof of concept
3. Simulate (floating-point)

Iterate on algorithm trade-offs
Validate against requirements

4. Convert design to fixed-point
Focus on design viability based on implementation constraints

5. Simulate (fixed-point)
Iterate on implementation trade-offs
Validate against original requirements

6. Generate code for implementation
7. Validate and verify design after deployment

Examine a fixed-point algorithm design
Model-based Design workflow

10

® ®

Advantages of Model-Based Design workflow

Maintain One Truth
One integrated design environment
MATLAB benefit:

Integrated visualization, analysis & design

No sacrifice of simulation speed
Automatic path to implementation

11

® ®

How does Model-Based Design makes fixed-point
design faster and easier?

Streamline process of converting your MATLAB algorithms to fixed-
point

Simulate fixed-point algorithms with large data sets at compiled-C-code
speed

Integrate with system-level design in Simulink

Generate embeddable C code for implementation with Real-Time
Workshop®

12

® ®

Streamlined floating-to-fixed conversion: introducing
Data-type override

Turn on the logging mode
Set data type override parameters
Observe dynamic range of variables in your M-code
Set the best fixed-point attributes to avoid overflow/underflow & large
quantization errors

13

® ®

Tools for scaling a fixed-point variable
Data logging

Steps involved with dynamic range analysis to convert a design into fixed-point

1. Compute the range based on the min/max logs
2. Compute the integer part to fit variable within range
3. Compute the fraction length as the rest of bit budget
4. Construct the fixed-point numeric type object

14

® ®

Fixed-point acceleration:
introducing new emlmex function

Fast simulation through code generation
Automatic generation of C-MEX function from M-function
M-code confined to embedded MATLAB language subset
Compile C-code execution speed (beyond 100x acceleration in
MATLAB)

15

® ®

Integrate MATLAB design with Simulink
Embedded MATLAB Function block

Change parameters and run Simulink®

simulations from MATLAB

Embedded MATLAB Function
Integration of Embedded MATLAB Functions in

Simulink

16

® ®

Automatic fixed-point C code generation
Real-Time Workshop

Enabled via Simulink Fixed-
point
Real-Time Workshop®

Real-Time Workshop®

Embedded Coder
Supports up to 32-bit fixed-

point numbers
Uses only native C integer

data types

17

® ®

Hands-on Demonstration

1. Implement the algorithm with floating-point data types in M.
2. Convert to fixed-point data types in M and run with default settings;

observe scaling issues!
3. Log the full numerical range of variables (data logging and data type

override)
4. Use the logged minimum and maximum values to set the fixed-point

scaling.
5. Validate the fixed-point solution interactively.
6. Convert M to MEX using EMLMEX function for fast simulation and large

test-set verification.
7. Convert M to C in Simulink Embedded MATLAB Function block with

Real-Time Workshop for embedded implementation.

18

® ®

For more information

Fixed-point signal processing webinars
Fixed-Point Programming in MATLAB

http://www.mathworks.com/cmspro/req11440.html?eventid=32477

Fixed-Point Signal Processing with MATLAB and Simulink
http://www.mathworks.com/cmspro/req12157.html?eventid=35522

About MATLAB and Simulink signal processing
products

http://www.mathworks.com/products/product_listing/index.html
Relevant product demos

http://www.mathworks.com/products/demos/index.html

User-contributed examples in MATLAB Central
http://www.mathworks.com/matlabcentral

http://www.mathworks.com/cmspro/req11440.html?eventid=32477
http://www.mathworks.com/cmspro/req12157.html?eventid=35522
http://www.mathworks.com/products/product_listing/index.html
http://www.mathworks.com/products/demos/index.html
http://www.mathworks.com/matlabcentral

19

® ®

Summary
Model-based design

Single-truth, integrated design environment for development of a
design from idea all the way to realizable implementation

Benefits
Integrated modeling, simulation and prototyping for signal
processing systems

Easy conversion to fixed-point data types and trade-off analyses

Automatic generation of C-code for DSPs

Construct test harnesses for real-time hardware verification

	Moving MATLAB® Algorithms into Complete Designs with Fixed-Point Simulation and Code Generation
	Outline
	Fixed-point signal processing applications
	Traditional Development flow
	Multiple truths in traditional workflows
	Examine a fixed-point algorithm design�Traditional workflow
	Problems with traditional workflow
	Model-Based Design Workflow
	Examine a fixed-point algorithm design�Model-based Design workflow
	Advantages of Model-Based Design workflow
	How does Model-Based Design makes fixed-point design faster and easier?
	Streamlined floating-to-fixed conversion: introducing Data-type override
	Tools for scaling a fixed-point variable�Data logging
	Fixed-point acceleration: �introducing new emlmex function�
	Integrate MATLAB design with Simulink�Embedded MATLAB Function block
	Automatic fixed-point C code generation �Real-Time Workshop
	Hands-on Demonstration
	For more information
	Summary

