
©
20

08
 T

he
 M

at
hW

or
ks

, I
nc

.

® ®

Verification and Validation of Models
and Code

Presenter: Mark Walker
mark.walker@mathworks.co.uk

2

® ®

Agenda

� Introductions
� Workflows for verification and validation

3

® ®

Introductions

� I spend most of my time:

A. Creating specifications and requirements (systems and software)

B. Implementation based on specification and requirements created
by somebody else (generating / writing / deploying / debugging
code)

C. Other (including both, or none of the above)

4

® ®

Demo

� How much time do we need to get 100% MC/DC coverage?

5

® ®

Requirements
Design

Code Test
Test

Code

Design
Requirements

0

5

10

15

20

25

30

35

40

45

50

Relative Cost
to Fix

Phase Found

D
ef

ec
t

T
yp

e

Relative Cost to Fix Defects per Phase Found

Test Code Design Requirements

Costs of Embedded Software Fault Propagation

Source: Return on Investment for Independent Verification & Validation,
NASA, 2004.

Cost of fixing defects
detected depending
on where they are
introduced

6

® ®

Methods for Early Verification and
Validation

� Traceability
� Requirements to model and code
� Model to code

� Modeling and Coding Standards
� Modeling standards checking
� Coding standards checking

� Testing
� Model testing in simulation
� Processor In the loop

� Proving
� Proving design properties
� Proving code correctness

7

® ®

Increasing Confidence In Your Designs

Verification Method

Traceability Modeling and Coding
Standards Checking

Model and Code
Testing

Proving Design
Properties and Code

Correctness

C
o

n
fi

d
en

ce

8

® ®

Address the Entire Development Process
Requirements

FPGA ASIC

Digital
Electronics

VHDL, Verilog

Implement

Integration

DSP

Embedded
Software

C, C++

MCU

Design

Physical Components

Environment

Algorithms

Requirements

G
en

er
at

e G
enerate

Integration Testing
Software Integration Testing
Hardware-in-the-Loop Testing
Hardware Connectivity

Hand-
Generate

System V&V
Requirements Validation
Robustness Testing
Modeling Standards Checking

Component V&V

Code Verification
Code Correctness
Processor-In-The Loop Testing

Design Verification
Model Testing
Coverage & Test Generation
Property Proving

9

® ®

FPGA ASIC

Digital
Electronics

VHDL, Verilog

Implement

Integration

DSP

Embedded
Software

C, C++

MCU

Traceability

Design

Physical Components

Environment

Algorithms

Functional Requirements

G
en

er
at

e G
enerate

�Tracing Requirements����Model
Simulink® Verification and Validation™

�Tracing Model����Source Code
Real-Time Workshop® Embedded Coder™

�Tracing Requirements����Source Code
Simulink Verification and Validation

Hand-
Generate

10

® ®

Modeling and Coding Standards

FPGA ASIC

Digital
Electronics

VHDL, Verilog

Implement

Integration

DSP

Embedded
Software

C, C++

MCU

Design

Physical Components

Environment

Algorithms

Modeling Standards

G
en

er
at

e G
enerate

Hand-
Generate

� Modeling Standards Checking
Simulink Verification and Validation

� Coding Standards Checking
PolySpace™ Client™ for C/C++

Coding Standards

11

® ®

Requirements

Early Validation and Robustness Testing

Design

Physical Components

Environment

Algorithms

Requirements

System V&V
Requirements Validation
Robustness Testing
Modeling Standards Checking

12

® ®

Component Testing

FPGA ASIC

Digital
Electronics

VHDL, Verilog

Implement

Integration

DSP

Embedded
Software

C, C++

MCU

Design

Physical Components

Environment

Algorithms

Functional Requirements

G
en

er
at

e G
enerate

Hand-
Generate

�Design
Verification

�Code
Verification

13

® ®

Test Generation Workflow

FPGA ASIC

Digital
Electronics

VHDL, Verilog

Implement

Integration

DSP

Embedded
Software

C, C++

MCU

Design

Physical Components

Environment

Algorithms

Functional Requirements

G
en

er
at

e G
enerate

Hand-
Generate

Code Harness

C

Detailed models
Component

Source Code

C

Analysis
Model

Test
Application

Code
Generation

�Design
Verification

�Code
Verification

14

® ®

Code Testing with Generated Signals
Simulink

� Software-in-the-loop
� On the host

� Processor-in-the-loop
� On the target processor

� Independent code testing
environment
� Generated signals and model outputs

are saved as a .mat data file
� Exported input signals drive code

tests
� Exported model outputs become

expectation values for code testing

15

® ®

Demo

� Processor-in-the-loop co-simulation

16

® ®

Proving

FPGA ASIC

Digital
Electronics

VHDL, Verilog

Implement

Integration

DSP

Embedded
Software

C, C++

MCU

Design

Physical Components

Environment

Algorithms

G
en

er
at

e G
enerate

Hand-
Generate

� Proving Design Properties
Simulink Design Verifier

� Proving Code Correctness
PolySpace™ Server for C/C++

Prove that design meets
the key functional
requirements

Prove that code meets
non-functional runtime
requirements

RequirementsRequirements

17

® ®

Code Correctness Formal method:Formal method:
Abstract InterpretationAbstract Interpretation

Red
faulty

Green
reliable

Grey
dead

Orange
unproven

Results are proven for all possible
executions of the code!!

Green
reliable

Green
reliable

Green
reliable

PP
rr
oo
vv
ee
nn

18

® ®

Code Correctness

� A model is a well controlled way to specify system
behaviour
� Generated code matches the model
� Few ambiguities, low warning rate

� 100% green is a realistic target

19

® ®

Demo

� Proving a functional requirement

20

® ®

Example Problems vs. Tools

� Incorrect Dynamic Response
� Simulation Testing

� Rapid Prototyping and Hardware-in-the-Loop

� Model Error: max(a,b) instead of min(a,b) to apply upper
clip
� Simulation Testing

� Property proving with Simulink Design Verifier

21

® ®

Example Problems vs. Tools

� Unreachable state / transition / code
� Test generation with Simulink Design Verifier
� PolySpace

� Overflow / underflow
� Simulation
� PolySpace

� Execution time exceeds deadline
� Simulation (requires execution time model)
� Processor-in-the-loop

22

® ®

Summary

� Model-Based Design enables early verification and
validation!

� Early verification and validation methods improve and
optimize your existing development process.

� Early problem detection significantly reduces time spent
debugging – shorter time to resolution

23

® ®

Master Class Invitation

� Methods for Early Verification and Validation
� Robustness Testing
� Automatic Test Generation

� Property Proving

