
1© 2015 The MathWorks, Inc.

Better than Hand –
Generating Highly Optimized Code
using Simulink and Embedded Coder

Lars Krause
Application Engineering

2

Challenges
Limited time and resources are common constraints for development projects

§ Fit advanced algorithms into low-
cost production hardware
– Limited ROM, RAM, stack, and speed

§ Embedded device often not known
during design
– Need optimal implementation

§ Hand coding is process
bottleneck
– Adds bugs, delays, iterations

“The advantages of Model-Based Design over hand-coding in C
can’t be overestimated.”
Kazuhiro Ichikawa, Ono Sokki
Ono Sokki Reduces Development Time for Precision Automotive Speed Measurement Device

3

Solutions
Techniques for accelerating the development process

Optimization Techniques
1. Use optimal settings
2. Optimize data types
3. Target vector engines
4. Use hardware support packages
5. Reuse components
6. Reduce variables
7. Reduce logic

4

Launch Quick Start

1. Use optimal settings
Embedded Coder Quick Start

§ Prepare your model for
production code generation

§ Optimize generated code,
independently of target

§ Find optimal settings with the
Quick Start Tool

Select Optimization Objectives

Apply All Optimizations

5

2. Optimize data types
Single Precision Converter

Launch Single Precision Converter
§ Bring new algorithms from

simulation to production

§ Convert double-precision
systems to single precision

§ Save resources
- Less memory footprint
- Double precision not optimally

supported in many targets

Auto-convert to single precision

Generate code with less footprint

6

Identify run-time bottlenecks

3. Target vector engines
Replace time-consuming code with vector instructions

§ Optimize code for your target

§ Generate highly optimized
code using vector instruction
sets

§ Increase real-time execution
efficiency

Select code replacement

Generate code for vector engines

7

4. Target vector engines
Execution times of a FIR filter - PIL benchmark results, ARM Cortex-A

Compiler optimization level

In
st

ru
ct

io
ns

 o
pt

im
iz

ed

Embedded Coder NEON
16,8 µs Embedded Coder NEON

& compiler optimized
14,1 µs

Run Format: [ANSI or Ne10], [gcc no opt or gcc -02], ARM 1Ghz Cortex A8

410,7 µs

Embedded Coder ANSI-C

185,5 µs

Embedded Coder ANSI-C
& compiler optimized

§ Vector instructions
have a significant
impact on
execution time

§ This impact can
exceed the impact
of compiler
optimization

8

4. Use hardware support packages
Download hardware support packages with the Add-On Explorer

§ Fast code adaption to many
targets
- Model is the golden reference

for code generation
- Generated code is optimized for

specific targets

§ MathWorks package support:
- ARM, ..., Zynq

§ Additional packages:
- NXP, TI, Infineon,

STMicroelectronics,…

The MATLAB Add-On Explorer

9

Reusable functions

Reusability is not obvious

Reuse with Simulink functions

5. Reuse components
Reuse with Simulink functions

§ Clear reusability structure

§ Generate compact and
efficient code

Generate efficient code from Simulink
functions

10

1) Pass scalar output as individual argument

6. Reduce variables
New options for global RAM optimization

§ Reduced RAM usage
- No additional variables needed

for intermediate results in both
cases

2) Reuse input signals for output

11

7. Reduce logic
Enable component reuse with Simulink Clone Detection

Launch Simulink Clone Detection

§ Identify modeling clones

§ Improve model
componentization

§ Enable Reuse:
Replace clones with
- Simulink functions or
- library blocks

View results

Refactor your model

12

7. Reduce logic
Polyspace Code Prover

Launch Polyspace Code Prover § Remove unnecessary
robustness code

§ Analyze generated and
hand written C/C++
source code without
program execution

§ Prove absence of run-
time errors, e.g. overflow

Identify unreachable robustness code

13

Solution Summary
Accelerating the software development process with automatic code generation

Optimization Techniques
1. Use optimal settings
2. Optimize data types
3. Target vector engines
4. Use hardware support packages
5. Reuse components
6. Reduce variables
7. Reduce logic The code generated with Embedded Coder required

about 16% less RAM than the handwritten code used
on a previous version of the ECU; the code met all
project requirements for efficiency and structure.
Mario Wünsche, Daimler
Daimler Designs Cruise Controller for Mercedes-Benz Trucks

