Accelerating FPGA/ASIC Desi
Verification

MATLAB EXPO 2017/

Tabrez Khan — Senior Application Engineer
Vidya Viswanathan — Application Engineer

&\ MathWorks:

Agenda

Challeges with Traditional Implementation workflow
Model-Based Design for Implementation

= Generate VHDL® and Verilog® code from MATLAB, Simulink, and
Stateflow®

= Optimize the generated RTL design for area and/or speed

= Develop system-level test benches in MATLAB and Simulink for RTL
verification with EDA tools

= Automate verification with FPGA-in-the-Loop
= Summary & next steps

4\ MathWorks

Traditional Implementation Workflow

.

DESIGN

Long development cycles
Prevents short iteration cycles

Difficult to optimize the
algorithm at a system level

: MATLAB
Adodihn ‘\ Simulink
Development

a4 Stateflow

HDL Code Creation

HDL Verification

HDL Refinement

HDL Verification

Fixed Point Conversion

FPGA Verification

4\ MathWorks

Separate Views of DSP Implementation

‘ MathWorks:

Separate Views of DSP Implementation

System Designer FPGA Designer

Algorithm Design System Test Bench RTL Design Verification

Fixed-Point Environment Models IP Interfaces Behavioral Simulation

Timing / Control Logic Analog Models Hardware Architecture Functional Simulation

Architecture Exploration Digital Models Static Timing Analysis
Algorithms / IP Algorithms / IP Timing Simulation

Implement Design Back Annotation

FPGA Requirements Synthesis

T Map
Hardware Specification

_ Place & Route FPGA Hardware
Test Stimulus

4\ MathWorks

Model-Based Design for Implementation

MATLAB® and Simulink®
Algorithm and System Design

RTL Design Verification

ALYUIILI vesiyii SYSLEiill 1ESL DeEliCii

Fixed-Point Environment Models IP Interfaces Behavioral Simulation

Timing / Control Logic Analog Models Hardware Architecture Functional Simulation

Architecture Exploration Digital Models Static Timing Analysis

Algorithms / IP Algorithms / IP Timing Simulation

Implement Design Back Annotation

FPGA Requirements Synthesis

—_— Map
Hardware Specification

Place & Route FPGA Hardware

Test Stimulus

Model-Based Design for Implementation

MATLAB® and Simulink®
Algorithm and System Design
Model Refinement for Hardware

RTL Design

IP Interfaces

Automatic HDL Hardware Architecture
Code Generation

Implement Design

Synthesis
Map

Place & Route

Verification

Behavioral Simulation

Functional Simulation

Static Timing Analysis
Timing Simulation

Back Annotation

FPGA Hardware

4\ MathWorks

Model-Based Design for Implementation

MATLAB® and Simulink®
Algorithm and System Design
Model Refinement for Hardware

Automatic HDL
Code Generation

HDL Co-Simulation

Behavioral Simulation

Implement Design

Synthesis
Map

Place & Route

Verification

Behavioral Simulation

Functional Simulation

Static Timing Analysis
Timing Simulation

Back Annotation

FPGA Hardware

‘ MathWorks:

4\ MathWorks

Model-Based Design for Implementation

: ; [S 2

MATLAB® and Simulink® i I

Algorithm and System Design | |

Model Refinement for Hardware | o J

I Verification l

I |

| |

} I . : . |
Automatic HDL | . Functional Simulation

. HDL Co-Simulation | |

Code Generation | Static Timing Analysis |

Behavioral Simulation : T|m|ng Simulation :

. i |

| Implement Design Back Annotation I

Back Annotation I I

: Synthesis I

| Map |

. e I |

Implement Design Verification I Place & Route FPGA Hardware I

Synthesis Functional Simulation : |

|

Map Static Timing Analysis L

Timing Simulation

Place & Route

4\ MathWorks

Model-Based Design for Implementation

MATLAB® and Simulink®
Algorithm and System Design
Model Refinement for Hardware

Automatic HDL

Code Generation HDL Co-Simulation

Behavioral Simulation

Back Annotation

Implement Design Verification

FPGA Hardware

Synthesis Functional Simulation

Map Static Timing Analysis

Timing Simulation

FPGA Hardware
FPGA-in-the-Loop

Place & Route

10

Model-Based Design for Implementation

MATLAB® and Simulink®
Algorithm and System Design
Model Refinement for Hardware

Automatic HDL
Code Generation

Behavioral Simulation A I I S’ -e S :FO m
Back Annotation =,
1 sir
g o
)

Implement Design Verification

HDL Co-Simulation

Synthesis Functional Simulation

Map Static Timing Analysis

Timing Simulation

FPGA Hardware
FPGA-in-the-Loop

Place & Route

4\ MathWorks

11

4\ MathWorks

Why Model-Based Design: Achieving the Shift-Left
Reduce overall development time

= Reduced FPGA prototype development schedule
= Shorter design iteration cycle by 80%
= Improved product quality

Increase RN Decrease
detailed

downstream
modelling . N development time

HDL Coder

Manual HDL
Coding

o 20 40 (=18} 20 100
Schedule time (26)
B Requirements phase B Functional Design ki Detailed Design
B HDL Creation ki HDL Verification

kd Hardware lteration

m Final ASIC Implementation 12

4\ MathWorks

Automatic HDL Code Generation
HDL Coder

+ + P Convert

X Automatically generate bit-true,
a@2)1) cycle-accurate HDL code from
z Simulink, MATLAB and Stateflow

K
a(3)1)

"a| Code G

BEGIN -
Tnput_signed <= signed(Input);:

o
2@

o

-- <812>/s(1
=_1 mul temp <= to_signed(29669, 23 * Inggl signed:

L] L] L]
u I I C I O n a 6¢ s_1_outl <= "01111111" WHEN (s_1_il (38) = '0') AND (s_1_mul_temp (37
"10000000" WHEN (s_1_mul_tempjf3gf = *1') AND (s_1_mul_temp(37 DOWNTO :

on Report
5_1_mul_remp (26 DOWNTO 19);:
ource Report

traceability!! =

ht Navigation

4

o
@

-- <S812>/Delay2l
Delay2l_process : PROCESS (clk, reset)
BEGIN
IF resec = '1' THEN
Delay?l_outl <= to_signed(0, 12);
ELSIF clk'EVENT AND clk = '1' THEN

revious || Next \ 3 IF enb = '1' THEN
Delay2l outl <= Delayll outl;
Generated Source Files END IF;
END IF;

Equalizer_Subsystem_pkg.vhd 2 END PROCESS Delay2l_pracess;
Filter1.vhd 9
Filter2.vhd L _
Eilter3.vhd 82 a 3 1 mul_temp to_signed (16152, 15) * Delay2l outl;
Filterd.vhd a 3 1 outl <= "01111111111111111111111111" WHEN (a_3_1 _mul_temp(26) = '0')

"10000000000000000000000000" WHEN (a_3_1_mul_temp(26) = '1') AND (a_3_

filter_bank_left.vhd a_3_1_mul_temp(25 DOWNTO 0);

1o

Filterl_blockvhd (1) g
Filter2_block.vhd L) Delayll process : PROCESS (clk, zeset)
Filter3_block.vhd o BEGIN
91 IF reset = '1' THEN
Filterd_block.vhd 9z Delayll_outl <= to_signed(0, 12):
93 ELSIF clk'EVENT AND clk = '1' THEN
S 94 IF enb = '1' THEN S

i | v

13

HDL Code Generation Example

#Y sfir_fixed - Simulink Test Harness v — m| %
File Edit View Display Diagram Simulation Analysis Code Tools Format *
: =T Rotate & Fli L
CRICEY IR -1 3= RE R YCT M H @ -
&fir_fince] - .
Mask *
= -
© oo b Library Link ,
@ Signals & Ports L
m i pRx18_Ent0 x_in Requirements Traceability ’
- From Data Type Conversion Linear Analysis '
Workspace Design Verifier L
sfix16_En10 ¥ Coverage L
0.1339 - h_int
Model Advisor *
Constant
O Fixed-Point Tool...
.0.0838 |6 En10 h_in2 Model Transformer L
Constant1 C/C++ Code L
| MDLCade % Check Subsystem Compatibilty
0.2006 22186010 »{n_in3 PLC Code " Generate HDL for Subsystem
Constant2 % Polyspace 4 HDL Coder Properties ...
e o Block Parameters (Subsystem) HDL Block Properties ...
Hel,
co 2 | Navigate to Code
symmetric_fir
Run Demo
] Copyright 2007 The MathWorks, Inc.
»
Ready 108% FixedStepDiscrete .

‘ MathWorks:

14

Generate Verilog or VHDL code

& HDL Workflow Advisor - sfir_fixed/symmetric_fir
File Edit Run Help

Find: v|@ B

v (0§l HDL Workflow Advisor
v I§g 1. Set Target
o #1.1. Set Target Device and Synthesis Tool
@ 1.2. Set Target Frequency
~ @ 2 Prepare Model For HDL Code Generation
@ 2.1. Check Global Settings
@ ~2.2. Check Algebraic Loops
@ ~2.3. Check Block Compatibility
@ ~2.4. Check Sample Times
v (G 3. HOL Code Generation
~ I 3.1. Set Code Generation Options
[] 3.1.1. set Basic Options
] 3.1.2. Set Advanced Options
=] 3.1.3. Set Optimization Options
'] 3.1.4. Set Testbench Options
] ~3.2. Generate RTL Code and Testbench

Code generation report

[] Generate traceability report

[[] Generate resource wtilization report

[[] Generate high-level timing critical path report
[] Generate optimization report

[[] Generate model Web view

4\ MathWorks

15

Code Generation Report

= Traceability Report

= Resource Utilization
Report

= Critical Path
Estimation Report

Code Generation Report

@ & Find: 4 ¥ Match Case

Contents

Summary

Clock Summary

Code Interface Report

Timing And Area Report
High-level Resource Report
Critical Path Estimation

Optimization Report

istributed Pipelinin

Streaming and Sharing
Delay Balancing
Adaptive Pipelining

Traceability Report

Generated Source Files
symmetric_fir.vhd

Referenced Models

4\ MathWorks

— m} X
X
Critical Path Report for sfir_fixed/symmetric_fir
Summary Section
Critical Path Delay : 6.910 ns
Critical Path Begin : ud8
Critical Path End : y_out_pre
Highlight Critical Path: hdl_prj\hdlsrc\sfir_fixed\criticalPathEstimated.m 7
Critical Path Details
Id Propagation (ns) Delay (ns) Block Path
1 0.2980 0.2980 uds8
2 1.4960 1.1980 al
3 5.5000 4.0040 ml
4 5.5000 0.0000 as
5 6.9100 1.4100 out_pre |
W
symmetric_fir |_| View All | ud3
® | [Pl sfir_fixed » [Pa] symmetric_fir - &R v | = Main
. SampleTime -1
E delayed_xou
* Other
1 1 1, 1l
Q sfix16 [Ent0| 2 sforld Em10| 2 sfixif En10| 2Z sfciB JEni0| 2
uds wd? udb ud5
—stet6 Ent0 | 1 is\mu En10 _I 1 [-,l.x‘:_- Ent | sfix16_En10 .| 1 |6 _Ent0
! udl wd2 udd udd
at ’7+ : a2l " aa| *
shxd7_En10 sfxi7_Eni0 sfix17_Eni(
: sfix16_En10
fx33_En20 T h_ind

» h_in2 h_in3 m3 a6 ’ ’

-

What’s new?
Native Floating-Point

Generate target-independent
synthesizable RTL from single-precision
floating-point models

= Good for:
— Designs with high dynamic range calculations

— Getting started prototyping FPGAs without
having to perform fixed-point conversion

= Mix integer, fixed-point, and floating point
operations to balance numerical accuracy
versus hardware resource usage

= Over 130 Simulink blocks supported
= Demo video

» edit hdlcoderFocCurrentFloatScript

4\ MathWorks

% single
"
Product
ENTITY nfp mul _comp IS
PORT (clk : IN std_logic;
reset H IN std logic;
enb H In std_logic;
nfp inl H IN ztd logic wvector (31 DOWNTC 0); -- ufix3z
nfp in2 H IN std_logic_vector (31 DOWNIC 0); -- ufixsi2
nfp out H ouT std logic_wvector (31 DOWNTO 0) -- ufix32

Vi
END nfp mul comp;

LRCHITECTURE rtl OF nfp mul comp IS

SIGHAL AS ¢+ std logic; -- ufixl

SIGHAL AE : unsigned (7 DOWHTC 0); —- ufixs

SIGHAL EM : unsigned (22 DOWNTC 0); -- ufix23
nip:>

rrrrrr

17

https://www.mathworks.com/videos/hdl-coder-native-floating-point-123505.html

HDL Optimizations: What, How and Why?

Does it fit on
Does this my FPGA?
meet timing?

O

‘ MathWorks:

Does it do the
right thing?

FPGA Engineer

18

4\ MathWorks

Critical Timing Path

X

m2
fep : 5.5 ns
a

y_out_pre

ud4

v’ Critical path highlighting
v Helps you identify speed bottlenecks

19

Speed Optimization

Summary Section

4\ MathWorks

|_Critical Path Delay : 6.910 ns |—I\/Iaximum rate = 145 MHz

Critical Path Begin : ud§
Critical Path End : y_out _pre
Highlight Critical Path: hdl_prj\hdisrc\symmetric_fir_fixed\criticalPathEstimated.m

Critical Path Details

Id Propagation (ns) Delay (ns) Block Path
1 0.2980 0.2980 ud8

2 1.4960 1.1980 al

3 5.5000 4.0040 mil

4 5.5000 0.0000 a5

5 6.9100 1.4100 y_out_pre

Smaller
critical path

Is this the best
rate that is
achievable??

v' Automatic pipelining
v Helps you meet speed objectives

20

Speed Optimization
Output Pipelining

Subsystem & Model Reference 4
Test Harness ’
Format »
Rotate & Flip »
double fix16_En10
o} ot [, e »
From Data Type Conversion Mask Y
Workspace Library Link ’
sfix16_En10 y_out' signals & Ports »
-0.1339 = h_in1
Requirements Traceability 4
Constant Linear Analysis »
Design Verifier »
sfix16_En10 C »
-0.0838 = h_in2 s
Model Advisor »
Constant1
Fixed-Point Tool...
sfix16_En10 Model Transformer 4 e - Lot _
0.2026 h_in3 b r_fixed/symmetric_fir’)
++ » ¥ =) 5 sl rhgid
delayed_xout 4
Consar2 S o
PLC Code »
sfix16_En10
0.4064 — h_ind Polyspace ’
Constant3 Elod: P‘:lrannters (Subsystem)
fi SR
symmetric_fir Help

Run Demo
Copyright 2007 The MathWorks, Inc.

Check Subsystem Compatibility
Generate HDL for Subsystem
HDL Coder Properties ...

HDL Workflow Advisor

Navigate to Code

‘ MathWorks:

[*&| HDL Properties: symmetric_fir x |

General Target Specification

Implementation
Architecture Module -
Implementation Parameters
AdaptivePipelining inherit -
BalanceDelays inherit -
ClockRatePipelining inherit -
ConstrainedOutputPipeline |0 |
DistributedPipelining off -
DSPStyle ‘none -
FlattenHierarchy inherit -
InputPipeline 0 |
OutputPipeline E |
SharingFactor 0 |
StreamingFactor 0 |
[ok | cancel = Hep Apply

21

4\ MathWorks

Summary Section

Sp eed Optl m | Zatl O n |Critica| Path Delay : 6.940 nsI

Critical Path End : out_0_pipe_

Output Pipelining el b et

Critical Path Details

d Propagation (ns) Delay (ns) Block Path
1 0.2980 0.2980 ud8

& 1.4960 1.1980 al

3 5.5000 4.0040 ml

4 5.5000 0.0000 as

5 6.9100 1.4100 y_out_pre
6 6.9400 0.0300 out_0_pipe

’_;.W|

al

L,
udi
11,
z

Where do | place
the pipeline

y_out

=L i — registers??

22

‘ MathWorks:

Speed Optimization
Distributed Pipelining

Subsystem & Model Reference 4
Test Harness ’
Format , : -
Rotate & Flip X ﬁ HDL Properties: syrmmetric_fir X ‘
m double m sfix16_En10 S Arrange » E | T i 5 Iﬁ "
From Data Type Conversio Mask <
Workspace o e omermen Library Link , Implementation
o 130 IE-E0 s youl Signas & Pars : Architecture ‘Module .
% Requirements Traceability 4
- Lbi"e_"“‘;':ﬁ}"" Implementation Parameters
esign er
o onsa | 1E-En0 e Coverage ’ AdaptivePipelining inherit -
Model Advisor »
Constantt — BalanceDelays inherit .
o - N T . ClockRatePipelining inherit -
) B C/C++ Code L 2 S\
delayed_xout | ‘ Fir
Gonsinz R G o ConstrainedOutputPipeline |0 |
X Generate HDL for Subsystem
sfix16_En10 , : DistributedPipelining
0.4064 h_ind Polyspace HDL Coder Properties .
Coneiantd Block Parameters (Subsystem) I---"'-‘-'-’P‘-'-":'I"b Oﬁ
Properti HDL Workflow Advisor
symmetric_fir FlattenHierarct Y i =
Help Navigate to Code | |
InputPipeline]
OutputPipeline 5 |
SharingFactor 0 |
Run Demo StreamingFactor 0 |
Copyright 2007 The MathWorks, Inc.
[ok | cancel Hep Apply

23

4\ MathWorks

Speed Optimization
Distributed Pipelining

Summary Section

T —
Critical Path End : rd_13
Highlight Critical Path: hd|_prj\hdlsrc\sfir_fixed\criticalPathEstimated.m

Critical Path Details

s Maximum rate = 235 MHz

Id Propagation (ns) Delay (ns) Block Path
1 0.2980 0.2980 rd 16

2 4.3020 4.0040 m2

3 4.3320 0.0300 rd 13

24

Area Optimization

Data Out

Dataln 8

‘N’ (say 20) multipliers, each
running at 1 clock cycle

Data In

Coefficients —

20 clock
cycles
needed

Data Out

1 multiplier running at ‘N’ (20)
clock cycles

4\ MathWorks

25

Area Optimization
Resource Sharing

Subsystem & Model Ref

"y

Test Harness
Format
Rotate & Flip
double sfix16_En10
From Data Type Conversion Mask
Workspace Library Link
sfix16_En10 y_out Signals & Ports
-0.1339 = h_in1 =
Requirements Traceability
Constant Linear Analysis
Design Verifier
sfix16_En10 C
-0.0838 = h_in2 i
Model Advisor
Constant1 . i
Fixed-Point Tool...
sfix16_En10 Model Transformer
0.2026 ~ h_in3 . =
++
delayed_xout e
Constant2 = ' HDL Code
PLC Code
sfix16_En10
0.4064 = h_ind Polyspace
Constant3 Block Pt'lrame!efs (Subsystem)
ebic fir Properties...
s
o e Help

‘ MathWorks:

HDL Coder Properties ...

Check Subsystem Compatibility
G HDL for Subsy

HDL Workflow Advisor

Navigate to Code

Run Demo
Copyright 2007 The MathWorks, Inc.

e

[5] HDL Properties: symmetric_fir

General Target Specification
Implementation

Architecture | Module

Implementation Parameters

AdaptivePipelining ‘ inherit
BalanceDelays ‘ inherit
ClockRatePipelining inherit
ConstrainedOutputPipeline ‘D
DistributedPipelining on
DSPStyle none
FlattenHierarchy ‘ inherit
InputPipeline ‘ 0

OutputPipeline

SharingFactor

StreamingFactor ‘ 0

oK | cancel |

26

Area Optimization
Resource Sharing

Generic Resource Report for symmetric_fir_fixed

Summary

Multipliers 4
Adders/Subtractors 7
Registers 27
Total 1-Bit Registers 559
RAMs 0
Multiplexers 0
I/O Bits 135
Static Shift operators 0
Dynamic Shift operators 0

Generic Resource Report for symmetric_fir_fixed

4\ MathWorks

Summary

Multipliers 1
Adders/Subtractors 9
Registers 38
Total 1-Bit Registers 814
RAMs 0
Multiplexers 6
I/O Bits 135
Static Shift operators 0
Dynamic Shift operators 0

27

4\ MathWorks

Area Optimization
Resource Sharing

. - 5] Block Parameters: m4 >
R -2
delayed_xout Product

rd_12

Multiply or divide inputs. Choose element-wise or matrix product and specify
one of the following:
a) * or / for each input port. For example, **/* performs the operation
'ul*u2/u3d*u4'.
b) scalar specifies the number of input ports to be multiplied.
If there is only one input port and the Multiplication parameter is set to
Element-wise(.*), a single * or / collapses the input signal using the specified
operation. However, if the Multiplication parameter is set to Matrix(*), a
single * causes the block to output the matrix unchanged, and a single /

P in0 causes the block to output the matrix inverse.

outl F—
»in Main Signal Attributes
Serializer_Subnetwork Number of il"lletS:

: w | ——M™ind ok
ma m40_deser

» o Multiplication: 'Element-wise(.*) =

outd —
o Sample time: @ Not recommended for this block. Set to -1 to remove. Why?
Serializer_Subnetwork1 0.25

rd_3 ctr_0_3

7] Cancel Help Apply E

28

What’s new?
Adaptive Pipelining

Specify synthesis tool and target clock
frequency for automatic pipeline
Insertion and balancing

= Automatically inserts pipeline registers to
meet target frequency

— On by default

— Adds pipeline registers on parallel paths to
balance number of stages

= Good for:

— Getting started prototyping FPGAs without
worrying about manually inserting Delay blocks

HwModeRegister1

4\ MathWorks
2016

int16 int16 N
2 —plocren
c

=fix33 . sfix33

HwModeRegister2 -
Multiply-Add

HwModeRegisterd

PipelineRegister1

29

4\ MathWorks

Integrated HDL Verification

MATLAB® and Simulink®
Algorithm and Syste:n Design
Model Refinement for Hardware

Automatic HDL
Code Generation

HDL Co-Simulation

Behaviordl Simulation

Back Annotation

Implement Design Verification

Functional Simulation

Synthesis

Static Timing Analysis

Map

Timing Simulation

Place & Route

FPGA Hardware

FRGA-in-the-Loop '

30

&\ MathWorks

Co-Simulation with HDL Simulator

9,

+ Ve
Test Bench Stimuli Algorithm Resylts @, >Test Bench
——
Simulink
HDL Verifier

= Proof your HDL matches
the MATLAB/Simulink
specification

« Re-using MATLAB/Simulink
testbench HDL Simulator a1

4\ MathWorks

Model-Based Design for Implementation

MATLAB® and Simulink®
Algorithm and System Design
Model Refinement for Hardware

Automatic HDL

Code Generation HDL Co-Simulation

Behavioral Simulation

Back Annotation

Implement Design Verification

Functional Simulation

FPGA Hardware

Synthesis

Map Static Timing Analysis

Timing Simulation

Place & Route

FPGA Hardware
FPGA in the Loop

32

FPGA-Iin-the-Loop (FIL)
for any HDL code

= Part of HDL Verifier
= Easy to setup using FIL Wizard

= Fast simulation
— HDL runs on FPGA
— Gigabit Ethernet data transfer

Supported Xilinx boards

56670055 gﬁggi Supported Altera boards
ML505 ML401 Arria Il Cyclone I
ML506 ML402 DE2-115 Cyclone IV
ML507 ML403

XUP Atlys

XUP-V5

] FPGA-in-the-Loop Wizard

Steps Actions

Hardware Options Specify the source files for the HDL design. The FIL Wizard will attempt to i
the file type in the File Type column if it is incorrect.
Enter a check next to the file name that contains the top-level module. Cha

DUT /O Ports

incorrect in the Top-level module name field.

Build Options
Source Files:
File File Type Tc
hdlsrch D component.vhd VHDL ;I
hdlsrech I component.vhd VHDL -
hdlsrchController.vhd VHDL - |lv

Top-level module name: | Controller

Status

4\ MathWorks

33

E HOL Workflow Advisor - my_equalizer_sim_optimization/Equalizer&lgorit

File Edit Run View Help

MR

Find: name and description

4 | HDL Workflow Advisor
4 38 1. Set Target

@ A1.1. Set Target Device and Synthesis Tool
4 [Lh'_p 2, Prepare Model For HDL Code Generation

=] 2.1, Check Glojaktatki

Automation FPGA-In-the-Loop Verification

| ~2.2, Check Al
| A2.3. Check BI
| 224, Check 53
| ~2.5, Check FF

Automatic creation of |
FPGA-in-the-Loop ™"
verification models ~ pol |

Aow

ntegration with FPGA
development boards

=&k

Upda\e Diagram)

Add your own FPGA

Set Target Device and Synitiyesis Tdol for HOL code genet phoard (n eeds Ethern et)
Input Parameters

N\ \

| FPGA-in-thé\Lbop

N\ Y
N

| iling Virtex-6 MLE0S development board

[Launch Board F-"Ianager]

4 [3. HDL Code Generation
> I 3.1, set Code Generdtion
| 43,2, Generate R/ C and Testbench
| 3.3, Verify with Cosimulation
4 [F"_p 4, FPGA-in-the-Loop Implementation
| 441, Set FPGA-in-the-Loop Options
-~ | 4.2, Build FPGA-in-the-Loop

Family | Virtexa
Package | ff1156

Project folder h

Set Target Lib

Choose a platform

Altera Arria II GX FPGA development kit

Altera Cydone ITI FPGA development kit

Altera Cydone IV GX FPGA development kit
Altera DE2-115 development and education board
Altera Mios IT Embedded Evaluation Kit, Cydone III Edition
¥UP Atlys Spartan-6 development board

¥ilinx Spartan-6 5Pa01 development board

¥ilinx Spartan-6 5P&05 development board

¥ilimx Virtex-4 ML401 development board

Xilimx Virtex-4 ML402 development board

Xilimx Virtex-4 ML403 development board

Run This Task

Xilimx Virtex-5 ML50S development board
¥ilimx Virtex-5 ML50& development board
Xilimx Virtex-5 ML50T development board

¥ilinx Virtex-5 ¥UPYS5X110T development board

CIS-T B .~ Pt Xilinx Virtex-6 MLE0S development board

Add new board ...

7)

Pazzed Set Target Device and Synthesis Tool,

4\ MathWorks

34

New FPGA Families and Boards Supported by FIL

- FPGA Family
— Virtex Ultrascale

= FPGA board
— Artix-7 Arty (JTAG)

— Virtex-7 VC709 (JTAG, PCle)

— Virtex Ultrascale VCU110 (JTAG)

4\ MathWorks

R201/a

35

4\ MathWorks

SystemVerilog DPI Test Bench 201/

= Previously only available via command-line interface
= Now it's available in Config Param as well as HDL Workflow Advisor

Test Bench Generation Output

[] HDL test bench
[] Cosimulation model

SystemVerilog DPI test bench

Simulation tool: | Cadence Incisive | [] HDL code coverage

36

HDL Verifier: HDL Code Coverage

Activate HDL simulator code coverage

In generated test benches

= Works for cosimulation, SystemVerilog DPI,
or vector-based testbenches

= Supports Mentor Graphics Questa Sim and

Cadence Incisive

» makehdltb ('sfir fixed/symmetric fir',...
» 'GenerateSVDPITestBench', "ModelSim',

» 'HDLCodeCoverage', 'on',

Test Bench Generation Output
[] HDL test bench

[] Cosimulation model
SystemVerilog DFI test bench

Simulation tool: Mentor Graphics Modelsim ~

HOL code coverage

Questa Coverage Report

Number of tests

Fyiti !
Passed: 0
Warning: 1
Error: 0
Fatal: 0

List of tests included in report. ..
List of global attributes included in report...

List of Design Units mcluded i report...

Coverage Summary by Structure: | Coverage Summary by Type:

4\ MathWorks

201/

Design Scope « Coverage « Total Coverage: 95.19%| 92.33%
Controller_dpi_tb| 92.33% Coverage Type « Bins « Hits « Misses « Weight « % Hit « Coverage «

u_Controller | 92.33% Statements 39 39 0 1//100.00%| 100.00%

Branches 11 9 2 1| 81.81%| 81.81%

Toggles 2720| 2589 131 1| 95.18%| 95.18%

37

HDL Verifier: FPGA Data Capture

Probe internal FPGA signals to analyze
iIn MATLAB or Simulink

= Debug signals in a free-running FPGA
directly in MATLAB or Simulink

= Generates a block to add into the
VHDL/Verilog design going onto the FPGA

= Collects and visualizes the data in MATLAB
or Simulink

= Demo video

» generateFPGADataCapturelP

or

Simulink fa

4\ MathWorks

201/

MATLAB ‘ JTAG Cable

Data
Capture
IP

Available as part of HDL Verifier Xilinx/Intel hardware

support packages

38

https://www.mathworks.com/videos/hdl-verifier-fpga-data-capture-1487889896343.html

Harris Accelerates Verification of Signal
Processing FPGAs

Challenge

Streamline a time-consuming manual process for
testing signal processing FPGA implementation

Solution
Use HDL Verifier to verify the HDL design from within MATLAB

Results
= Functional verification time cut by more than 85%
= 100% of planned test cases completed
= Design implemented defect-free

Harris FPGA-based system.

4\ MathWorks

Link to user story

“HDL Verifier enabled us to greatly
reduce functional verification
development time by providing a direct
cosimulation interface between our
MATLAB model and our logic simulator.
As aresult, we verified our design
earlier, identified problems faster,
completed more tests, and compressed
our entire development cycle.”

Jason Plew
Harris Corporation

39

http://www.mathworks.com/company/user_stories/Harris-Accelerates-Verification-of-Signal-Processing-FPGAs.html

Lockheed Martin Develops Configurable,
Space-Qualified Digital Channelizer Using
MathWorks Tools

Challenge

Design and implement a reconfigurable, space-qualified
digital channelizer

Solution

Use Simulink to model and simulate the system, and
HDL Verifier with Mentor Graphics ModelSim to verify the
VHDL implementation

Results
= Verification time reduced by 90%
= QOverall development time shortened by eight
months
= Key algorithms reused, saving 50% of design effort
on subsequent projects

Artist’s rendition of one of the satellites
that will carry Lockheed Martin’s digital

channelizer.

Link to user story

“With Simulink and HDL Verifier,
simulation and verification are
performed in one environment. As
aresult, we can test the design
from end to end, improving quality
and ensuring design accuracy and
validity."

Bradford Watson
Lockheed Martin Space Systems

4\ MathWorks

40

http://www.mathworks.com/company/user_stories/Lockheed-Martin-Develops-Configurable-Space-Qualified-Digital-Channelizer-Using-MathWorks-Tools.html

4\ MathWorks

Summary

Respect project timeline

— Discover issues early through simulation

— Fast code turnarounds allow better design trade-offs
Collaborate in multidisciplinary teams

— Use one Model for Design and Implementation

— Seamlessly integrate version management

— Graphically compare models
Create working code

— Analyze fixed-point impact before going to implementation

— Auto-generate bug free code

— Verify early through co-simulation with FPGA's
Achieve required efficiency

— Optimize through advisors and automatic optimizations

41

4\ MathWorks

Call To Action

Learn more with recorded webinars & videos

= Accelerate Design Space Exploration Using HDL Coder
Optimizations

« HDL Implementation and Verification of a High-Performance FFT
= Using Custom Boards for FPGA-in-the-Loop Verification

« A Guided Workflow for Zyng Using MATLAB and Simulink

= HDL Verifier: FPGA Data Capture

42

https://www.mathworks.com/videos/accelerate-design-space-exploration-using-hdl-coder-optimizations-81998.html
https://www.mathworks.com/videos/hdl-implementation-and-verification-of-a-high-performance-fft-102537.html
https://in.mathworks.com/videos/using-custom-boards-for-fpga-in-the-loop-verification-71971.html
http://www.mathworks.com/videos/a-guided-workflow-for-zynq-using-matlab-and-simulink-86427.html?s_tid=srchtitle
http://in.mathworks.com/videos/hdl-verifier-fpga-data-capture-1487889896343.html

&\ MathWorks’

4\ MathWorks

Training Services

Generating HDL Code from Simulink

two-day course shows how to generate and verify HDL code from a Simulink® model using HDL
Coder™ and HDL Verifier™

Topics include:

= Preparing Simulink models for HDL code generation

- Generating HDL code and testbench for a compatible Simulink model
= Performing speed and area optimizations

= Integrating handwritten code and existing IP

= Verifying generated HDL code using testbench and cosimulation

43

&\ MathWorks

&)\ MathWorks:

Training Services

Programming Xilinx Zynqg SoCs with MATLAB and Simulink

two-day course focuses on developing and configuring models in Simulink® and deploying on
Xilinx® Zyng®-7000 All Programmable SoCs. For Simulink users who intend to generate, validate, and

deploy embedded code and HDL code for software/hardware codesign using Embedded Coder® and
HDL Coder™.

A ZedBoard™ is provided to each attendee for use throughout the course. The board is programmed
during the class and is yours to keep after the training.

Topics include:

= Zyng platform overview and environment setup, introduction to Embedded Coder and HDL
Coder

= |P core generation and deployment, Using AXI4 interface
= Processor-in-the-loop verification, data interface with real-time application
= Integrating device drivers, custom reference design

44

&\ MathWorks:

Training Services

DSP for FPGAS

This three-day course will review DSP fundamentals from the perspective of implementation within the FPGA fabric.
Particular emphasis will be given to highlighting the cost, with respect to both resources and performance, associated
with the implementation of various DSP techniques and algorithms.

Topics include:

Introduction to FPGA hardware and technology for DSP applications

DSP fixed-point arithmetic

Signal flow graph techniques

HDL code generation for FPGASs

Fast Fourier Transform (FFT) Implementation

Design and implementation of FIR, IIR and CIC filters

CORDIC algorithm

Design and implementation of adaptive algorithms such as LMS and QR algorithm
Techniques for synchronisation and digital communications timing recovery

&\ MathWorks’

45

4\ MathWorks

4\ MathWorks’

Accelerating the pace of engineering and science

~ Speaker Details | Contact MathWorks India
Email: tabrez.khan@mathworks.in
Vidya.viswanthan@mathworks.in Products/Training Enquiry Booth

Call: 080-6632-6000

Email: info@mathworks.in

Your feedback is valued.
Please complete the feedback form provided to you.

46

mailto:tabrez.khan@mathworks.in
mailto:Vidya.viswanthan@mathworks.in
mailto:info@mathworks.in

