MATLAB EXPO 2017

Building Fast and Accurate Powertrain Models for System and Control Development

Prasanna Deshpande

Challenges for the Powertrain Engineering Teams

- How to design and test vehicle powertrain in a single environment?
- How to perform powertrain matching, fuel economy, performance, and emission simulations?
- How to design and verify the controller at the vehicle system level?

What Does the Solution Look Like?

Key Message

Model-Based Design uses simulation to address the challenges of system design and optimization

Agenda

Agenda

Structure of a System Level Simulation Model

Modeling Dynamic Systems in the Simulink Environment

Structure of a System Level Simulation Model

Control System Design in Simulink

Linear Control Theory

- Linearize system and perform linear control design with Control System Toolbox™ and Simulink® Control Design
- Retest controller in nonlinear system

Specify System Response

- Specify response characteristics
- Automatic tuning using Simulink®
 Response Optimization™

Structure of a System Level Simulation Model

Model-Based Design Challenges

It's hard to do good Model-Based Design without good models

- Insufficient expertise / resources to build right kinds of models
- Limited adoption of HIL
- Significant impact on development time and cost

MathWorks' Response

Lower the barrier to entry

- Provide starting point for engineers to build good plant / controller models
- Provide <u>open</u> and documented models
- Provide very <u>fast</u>-running models that work with popular HIL systems

Powertrain Blockset

- New product: R2016b+ web release (October 2016)
- Goal: Provide pre-built, configurable and accurate models for real-time needs

Demo – HEV system level model

Powertrain Blockset

Library of blocks

Pre-built reference applications

Agenda

Challenges for the System Engineer

- How do I know if my powertrain configuration will meet my requirements?
- How can I squeeze a little more performance out of my existing architecture without violating any design constraints?

Multi-Mode HEV Review

SAE International

2013-01-1476 Published 04/08/2013 Copyright © 2013 SAE International doi:10.4271/2013-01-1476 spealtpow snejournals.org

Development of a New Two-Motor Plug-In Hybrid System

Naritomo Higuchi, Yoshihiro Sunaga, Masashi Tanaka and Hiroo Shimada Honda R&D Co., Ltd.

Multi-Mode HEV Review

SAE International

2013-01-1476 Published 04/08/2013 Copyright © 2013 SAE International doi:10.4271/2013-01-1476 spealtpow snejournals.org

Development of a New Two-Motor Plug-In Hybrid System

Naritomo Higuchi, Yoshihiro Sunaga, Masashi Tanaka and Hiroo Shimada Honda R&D Co., Ltd.

Multi-Mode HEV Review

2013-01-1476
Published 04/08/2013
Copyright © 2013 SAE International
doi:10.4271/2013-01-1476
saealtpow saeyournals.org

Development of a New Two-Motor Plug-In Hybrid System

Naritomo Higuchi, Yoshihiro Sunaga, Masashi Tanaka and Hiroo Shimada Honda R&D Co., Ltd.

Powertrain Blockset: Four use cases. One framework.

Vehicle Requirements **Test** UC1 UC4 **System** Closed-loop Test (HIL) **Simulation** UC2 UC3 **Adapt** Rapid **System Prototyping Test** and Reuse Subsystem **Subsystem** Design **Test** Unit Unit Design **Test Production Code**

Generation

- Use Cases:
- 1. System design and optimization
- 2. Controller parameter optimization
- 3. Software integration test
- 4. Software-hardware integration test (HIL)

Powertrain Blockset Enables Accessible Optimization Capabilities

Speedup Ratio

• 50 to 100X

- Simulation Time / Real-Time
- HEV Reference Application

Efficient Optimization

- More drive cycles and design parameters
- Using fewer resources

- Easier implementation
- Simulink Design Optimization UI

Design Optimization Problem Statement

- Maximize MPGe
 - FTP75 and HWFET
 - Weighted MPGe = 0.55(FTP75) + 0.45(HWFET)

Optimize Parameters:

- 5 control parameters
 - EV, SHEV, Engine mode boundaries
- 1 hardware parameter
 - Final differential ratio

Use PC

- Simulink Design Optimization (SDO)
- Parallel Computing Toolbox (PCT)

Lenovo ThinkPad T450s Dual Core i7 2.60GHz 12 GB RAM

Simulink Design Optimization

- Speed Up Best practices
 - Accelerator mode
 - Fast Restart

Use Parallel Computing Toolbox

Specify Simulation timeout

Optimization Results – Iteration Plot

Optimization Results

Simulink Design Optimization → Response Optimization

How Can the Problem be Expanded?

- Different Initial SOC Points
- Battery Capacity or Cell Configuration
 - Ah rating
 - Number cells (or modules) in series / parallel
 - Affects vehicle mass
- Road Grade Profiles
- Utilize 'Uncertain Variables' in SDO
 - Optimize for Robustness

Series, # Parallel?

Agenda

Challenges for the Automotive Controls Engineer

- How do I know if my motor controller will produce the desired performance?
- What will the interactions be between my motor and the rest of the vehicle systems?
- How will my motor operate under more extreme load cases?

Different Motor Models for Different Needs

- System Optimization
 - Goal: Estimate fuel economy
 - Requirements: fast simulation speed, simple parameterization
 - Model choice: empirical model

MathWorks^a

Subsystem Control Design

- Goal: Study controller interactions
- Requirements: higher accuracy, inclusion of effects like saturation
- Model choice: nonlinear saturation

Detailed model = inverter controller + nonlinear motor model

High Fidelity Detailed Motor Model in Simscape

- FEA simulations or dynamometer data used to obtain non-linear flux table
- Simscape-based model created to capture this effect

Including Detailed Subsystem Variants

- Add your own subsystem variants to the existing vehicle models
 - Simulink-based
 - Simscape-based
 - S-function

Detailed Model Variant Simulation

Cycle Name	Final S	OC (%)	MPGe	
Name	Mapped	Detailed	Mapped	Detailed
HWFET	42	44	50.5	51.8
FTP75	41.4	42.8	59.6	66.4

- Detailed variant gives comparable response
- Supervisory controller handles both motor variants
- Motor controller requires further verification

Torque Control Performance

FTP75 Drive Cycle

 Motor torque response accurately follows the commanded torque at different speeds

Torque Control Performance

US06 Drive Cycle

- Much higher power demand reveals a problem
- Motor controller becomes unstable under certain operating conditions

Controller Enhancements

Controller robustness was improved via dynamic gain scheduling

Torque Control Performance

US06 Drive Cycle

 Even in more extreme maneuvers, improved motor controller is able to provide the commanded torque

Powertrain Blockset and Simscape

Complementary Technologies

Powertrain Blockset Focus	Simscape Focus	
Empirical studies	Predictive studies	
Engine modeling	Electrical, fluid system design	
Engine calibration	Multi-domain modeling	
Fuel economy studies	Architecture concept evaluation	

System Level Verification

- Started with a fast running system model
- Incorporated a detailed subsystem model
- Ran several use cases to identify problems
- Modified subsystem controller to address problems
- Verified the updated subsystem met requirements

Key Takeaways

- Powertrain Blockset provides components and controllers for enabling rapid
 Model-Based Design of vehicle powertrains
- Fast simulation time enables efficient optimization using fewer resources
- Powertrain Blockset can be combined with high fidelity subsystem models to perform system level testing and verification

Thank you

Please send your questions to Mike Sasena at mike.sasena@mathworks.com