Laser Spot Size Measurement Using A Webcam

MATLAB EXPO 2017

Dr. G. Manoj Kumar Rajendhar Junjuri Rohit Suresh

Project Description

What is LIBS?

Sample Spectrum

Need for Spot Size

Energy requirement for LIBS- every material has a different threshold energy for its breakdown. Knowing the Spot size enables us to accurately tune the laser to the threshold requirements of that particular material under study.

Motivation for a new method

The usual method of using a knife-edge or blade is very labor intensive.

Our method can be performed by a single individual in a very short amount of time.

This method is also cost effective since it uses an everyday webcam.

Apparatus for Webcam Method

- ▶ He-Ne Lase
- OD Filters
- Focusing Op
- Webcam- M

m VX-700

Experimental Setup

The Procedure

The procedure of this method has two parts:

Image Acquisition

Image Processing

MATLAB Tools

Mainly, 3 tools from MATLAB feature in our method.

- imtool
- improfile
- cftool

IMTOOL

IMPROFILE

CFTOOL

```
fitresult =
```

```
General model Gauss1:
fitresult(x) = a1*exp(-((x-b1)/c1)^2)
Coefficients (with 95% confidence bounds):
             125.9 (121.9, 129.8)
 a1 =
             22.61 (22.38, 22.84)
 b1 =
             9.002 (8.675, 9.328)
  c1 =
          10
                20
                      30
             15
                   25
                         35
                  Х
```


Interpretation of Data

- We use the FWHM of the fit(b1) to determine the spot size.
- The results of the fit are obtained in terms of pixels.
- The physical size of each pixel on the sensor is
 4.8 microns.
- Using this knowledge, the spot size of this iteration of the experiment is calculated as 108.528 microns.

MATLAB GUI for the method

Results

Iteration #	Approx. Angle wrt X-axis	FWHM in pixels	Spot Size in microns	Theoretical spot size	%error
1	45	22.61	108.528	128.409	15.48256
2	0	20.29	97.392	128.409	24.15485
3	90	23.76	114.048	128.409	11.1838
4	135	18.94	90.912	128.409	29.20122
5	22.5	23.3	111.84	128.409	12.9033
6	67.5	25.11	120.528	128.409	6.13742

Advantages

- This is a low cost method since it uses only an ordinary webcam.
- This method involves no moving parts, leading to a decrease in the possibility of errors.
- This method does not require multiple persons to implement and hence is less labour intensive than the other methods.

THANK YOU

