### MATLAB EXPO 2017

Modeling Mechanical and Hydraulic Systems in Simscape

**Dhirendra Singh** 

## too big



ABB Optimizes Ship Energy Flows

## too difficult



DCNS Simulates Handling System

## one chance



Lockheed Martin Develops MRO

## Why use Simscape?

## Makes modeling easy



# Simscape handles equations automatically

$$F_{Spring} = k_{Spring}^*(z_{Car})$$

$$F_{Shock} = b_{Shock} * (\frac{dz_{Car}}{dt})$$

$$\frac{d^2z_{Car}}{dt^2} = \frac{-F_{Spring} - F_{Shock}}{m_{Car}}$$

Simulink

Simscape



# Simscape handles equations automatically

$$F_{Spring} = k_{Spring}^* (z_{Car} - z_{Whl})$$

$$F_{Shock} = b_{Shock}^* (\frac{dz_{Car}}{dt} - \frac{dz_{Whl}}{dt})$$

$$\frac{d^2 z_{Car}}{dt^2} = \frac{-F_{Spring} - F_{Shock}}{m_{Car}}$$

$$F_{Tire} = k_{Tire}^* (z_{Whl}) + b_{Tire}^* (\frac{dz_{Car}}{dt})$$

$$\frac{d^2 z_{Whl}}{dt^2} = \frac{F_{Spring} + F_{Shock} - F_{Tire}}{m_{Car}}$$





# 3D mechanics hybrid powertrain





power steering air conditioning





electrical
mechanical
hydraulic

less clicking more simulating

# Reduce energy consumption in integrated systems

# Simscape Focus: Domain integration Algorithm design Optimization









Why model the physical system? Too big, too difficult, one chance, ... Why Simscape? Makes modeling easy **Develop controller** Find best design



#### **Agenda**

- Motivation
- Simscape physical network approach
- Example: BackHoe
- System Level Integration
  - Mechanical system
  - Hydraulics system
- Parameter Tuning
- Simcape in Model-Based Design

# Why model the physical system?

Too big, too difficult, one chance, ...

#### Why Simscape?

Makes modeling easy
Develop controller
Find best design



#### **Physical Modeling with Simulink**

- Simulink is best known for signal based modeling
  - Causal, or input/output
- Simscape enables bidirectional flow of energy between components
- System level equations:
  - Formulated automatically
  - Solved simultaneously
  - Cover multiple domains







Simulink: Input/Output





Simscape: Physical Networks





Electrical

Thermal Liquid Pneumatic

Magnetic

Mechanical







Custom Domains (Simscape Language)



#### **Agenda**

- Motivation
- Simscape physical network approach
- Example: Backhoe
- System Level Integration
  - Mechanical system
  - Hydraulics system
- Parameter Tuning
- Simcape in Model-Based Design

# Why model the physical system?

Too big, too difficult, one chance, ...

#### Why Simscape?

Makes modeling easy
Develop controller
Find best design



#### **Backhoe Actuation System**

System



- Simulation Tasks
  - 1. Determine required size for actuator components
  - 2. Optimize design parameters in actuator and controller
  - 3. Measure robustness of design with relevant physical effects
  - 4. Test embedded hardware and software using HIL testing



## Modeling a Hydraulic Actuation System

Model:



**Problem:** Model a hydraulic actuation system within the Simulink environment

Solution: Use Simscape Fluids to model the hydraulic system & Simscape Multibody to model mechanical system

MATLAB EXPO 2017







#### **Agenda**

- Motivation
- Simscape physical network approach
- Example: Backhoe
- System Level Integration
  - Mechanical system
  - Hydraulics system
- Parameter Tuning
- Simcape in Model-Based Design

# Why model the physical system?

Too big, too difficult, one chance, ...

#### Why Simscape?

Makes modeling easy
Develop controller
Find best design



#### **Mechanical System**





#### **CAD to Simscape Multibody Solutions**

- Options for all CAD systems
- Convert full assembly via Simscape Multibody Link
  - Converts mates to joints
  - Mass, inertia, geometry, colors all converted
  - Block diagram built automatically
    - Same hierarchy as CAD model
- Reference files directly
  - STEP or STL files





#### **CAD** model

 https://cad.onshape.com/documents/58b99e4c0a25bb0ff5a7a368/w/0f8a21 6769e4fc8224eb242e/e/f90780d0737155c0edc950e8





#### Simscape Multibody Link: Convert CAD Assembly to Simscape Mutibody

- Use Simscape Multibody Link plugin to export from CAD to XML
- Import XML file into Simscape Multibody (>> smimport)





#### **Demo**

Lets bring the CAD model into Simscacpe Multibody



#### **Mechanical System**

- Fewer iterations on mechanical design because requirements are refined
- Fewer mechanical prototypes because mistakes are caught earlier
- Reduced system cost because components are not oversized
- Less system downtime because system is debugged using virtual commissioning





#### **Agenda**

- Motivation
- Simscape physical network approach
- Example: Backhoe
- System Level Integration
  - Mechanical system
  - Hydraulics system
- Parameter Tuning
- Simcape in Model-Based Design

# Why model the physical system?

Too big, too difficult, one chance, ...

#### Why Simscape?

Makes modeling easy
Develop controller
Find best design



#### **Demo**

Lets Build hydraulic actuation for our mechanical model



#### **Hydraulic Actuation System – using Simscape Fluids**

- Provides libraries of component models for fluid power systems
- Models can be customized for your needs
  - Create reusable assemblies
  - Adjust parameterization
  - Define custom components
- Leverage MATLAB and Simulink
  - System-level analysis
  - Control design and HIL testing







#### Actuators, Valves, Pumps and Motors, Pipes and Tanks, Heat Exchangers

- Translational and rotational
  - Add or neglect compressibility
- Mechanical effects
  - Hard stops, Friction
  - Forces
- Thermal effects
  - Effect of temperature on fluid properties
  - Heat transfer to environment











Actuators, Valves, Pumps and Motors, Pipes and Tanks, Heat Exchangers

- Directional
  - Spool, check, cartridge
  - Parameterization options
- Pressure control
  - Control tasks (variable)
  - Switching tasks (fixed)
- Flow control
  - Pressure dependent
  - Pressure independent

















#### Actuators, Valves, Pumps and Motors, Pipes and Tanks, Heat Exchangers

- Fixed and variable displacement
  - Gear pumps, vane and piston pumps
  - Custom pump designs

- Parameterization options
  - Pump delivery
  - Efficiency and losses
  - Leakage and friction









Actuators, Valves, Pumps and Motors, Pipes and Tanks, Heat Exchangers

- Configurable pipeline models
  - Fluid compressibility
  - Fluid inertia
  - Wall compliance
  - Elevation changes
  - Heat transfer
- Tanks and accumulators
  - Volume parameteriztion
  - Number of inlets
  - Pressurization









Actuators, Valves, Pumps and Motors, Pipes and Tanks, Heat Exchangers

- Standard and custom types
  - Parallel or counter flow
  - Single or multiple shell passes
  - Mixed or unmixed flow



- Parameterization options
  - Pressure losses
  - Heat transfer
  - Compressibility







#### **Create or Modify Reusable Components**

```
Editor - C\MyComponents\+Hydraulic\CustomOrifice_full.ssc
                                        西斯
  CustomOrifice_full.ssc > +
   component CustomOrifice full
   % Custom Orifice
    The block models a fixed orifice for laminar and turbulent regimes
      A = foundation.hydraulic.hydraulic; * A:left
      B = foundation.hydraulic.hydraulic; % B:right
    variables
          = { 1 , 'm^3/s' }; % Volumetric flow rate
          = { 1 , '1' };
                         Reynolds number
   equations
      p == A.p - B.p;
      Re == q/(area*viscosity kin)*Dh;
      if (abs (Re) >=Recr)
                                    % Turbulent flow
         q == Cd*area*sqrt(2/density*abs(p)) * sign(p
                                    % Laminar flow
      else
         g == 2*(Cd/sqrt(Recr))^2*area*Dh*p/(viscosit
      end
   end
    branches
32
      q : A.q -> B.q;
33
    end
     aquations
      p == A.p - B.p;
      Re == q/(area*viscosity kin)*Dh;
      if (abs (Re) >= Recr) & Turbulent flow
        q == Cd*area*sqrt(2/density*abs(p))*sign(p);
                     & Laminar flow
        q == 2*(Cd/sqrt(Recr))^2*area*Dh*p/(viscosity kin*density);
                                                     Ln 33 Col 6
```

#### Equations defined in a text-based language

- Based on variables, their time derivatives, parameters, etc.
- Define simultaneous equations
  - Can be DAEs, ODEs, etc.
  - Assignment not required
  - Specifying inputs and outputs not required

$$q = \begin{cases} C_{D} * \sqrt{A \frac{2}{\rho} |\mathbf{p}|} * sign(p) & Re \ge Re_{cr} \\ 2*C_{DL} * A \frac{D_{H}}{\nu \rho} p & Re < Re_{cr} \end{cases}$$



#### **Agenda**

- Motivation
- Simscape physical network approach
- Example: Backhoe
- System Level Integration
  - Mechanical system
  - Hydraulics system
- Parameter Tuning
- Simcape in Model-Based Design

# Why model the physical system?

Too big, too difficult, one chance, ...

#### Why Simscape?

Makes modeling easy
Develop controller
Find best design



### **Estimating Model Parameters Using Measured Data**

#### Model:



**Problem:** Simulation results do not match measured data because model parameters are incorrect

**Solution:** Use Simulink Design Optimization to automatically tune model parameters

MATLAB EXPO 2017



| Area <sub>A</sub> | Area <sub>B</sub> | Area <sub>V</sub> |
|-------------------|-------------------|-------------------|
| 0.0176            | 0.0106            | 200               |



## **Estimating Model Parameters Using Measured Data**

- Steps to Estimating Parameters
- 1. Import measurement data

2. Identify parameters and their ranges

3. Estimate parameters



Experiment plot: MeasuredData1



#### **Agenda**

- Motivation
- Simscape physical network approach
- Example: Backhoe
- System Level Integration
  - Mechanical system
  - Hydraulics system
- Parameter Tuning
- Simcape in Model-Based Design

# Why model the physical system?

Too big, too difficult, one chance, ...

#### Why Simscape?

Makes modeling easy
Develop controller
Find best design



#### **Simscape Key Points**

- Enables you to use physical networks to model systems spanning multiple physical domains
- Provides a MATLAB-based language for creating custom component models
- Fully integrated with MATLAB and Simulink
  - Integration with control algorithm
  - Optimization
  - C code generation for HIL









#### **Agenda**

- Motivation
- Simscape physical network approach
- Example: Backhoe
- System Level Integration
  - Mechanical system
  - Hydraulics system
- Parameter Tuning
- Simcape in Model-Based Design

# Why model the physical system?

Too big, too difficult, one chance, ...

#### Why Simscape?

Makes modeling easy
Develop controller
Find best design



#### **Training Services**

#### Exploit the full potential of MathWorks products

#### Flexible delivery options:

- Public training available in several cities
- Onsite training with standard or customized courses
- Web-based training with live, interactive instructor-led courses



#### More than 48 course offerings:

- Introductory and intermediate training on MATLAB, Simulink,
   Stateflow, code generation, and Polyspace products
- Specialized courses in control design, signal processing, parallel computing, code generation, communications, financial analysis, and other areas



#### Modeling Mechanical and Hydraulic Systems in Simscape

- Modeling Physical Systems with Simscape
  - This one-day course discusses how to model systems in several physical domains and combine them into a multidomain system in the Simulink environment using Simscape
- Modeling Fluid Systems with Simscape
  - This one-day course focuses on modeling hydraulic systems in Simulink using Simscape Fluids
- Modeling Driveline Systems with Simscape
  - This one-day course focuses on modeling mechanical systems for automotive applications in the Simulink environment using Simscape Driveline



#### Modeling Mechanical and Hydraulic Systems in Simscape

- Modeling Multibody Mechanical Systems with Simscape
  - This one-day course discusses how to model rigid-body mechanical systems in the Simulink environment using Simscape Multibody
- Modeling Electrical Power Systems with Simscape
  - This one-day course discusses how to model electrical power systems in the Simulink environment using Simscape Power Systems



#### **Questions & Discussion**







Accelerating the pace of engineering and science

#### **Speaker Details**

Email: dsingh@mathworks.com

Phone: 9920288785

Twitter: @mech\_dps

#### **Contact MathWorks India**

Products/Training Enquiry Booth

Call: 080-6632-6000

Email: info@mathworks.in

Your feedback is valued.

Please complete the feedback form provided to you.