
1© 2015 The MathWorks, Inc.

Hardware and Software Co-Design 

for Motor Control Applications

GianCarlo Pacitti

Senior Application Engineer, MathWorks



2

Agenda

▪ Why use Hardware and Software for motor 

control?

▪ Why use Model-Based Design for motor control?

▪ How to use Model-Based Design for motor 

control?



3

Load motor

Motor under test 

(with encoder)

ZedBoard

FMC module: 

control board + 

low-voltage board

Mechanical 

coupler

Zynq SoC 
(XC7Z020)



4

Key trend: Increasing demands from motor drives

▪ Increased performance targets 

require advanced algorithms

▪ Advanced algorithms require faster 

computing performance.

– Field-Oriented Control

– Sensorless motor control

– Vibration detection and suppression

– Multi-axis control



5

Where are algorithms being run to gain performance?

▪ Multi-core microprocessors

▪ Multi-processor systems

▪ FPGAs

▪ ASICs

▪ System-on-Chip devices (SoCs)

▪ GPUs*

▪ Hardware and Software algorithms must be designed together

*particularly for vision applications



6

Punch Powertrain develops complex SoC-based motor 

control

▪ Powertrains for hybrid and electric vehicles

▪ Need to increase power density and efficiency at 

a reduced cost

– Integrate motor and power electronics in the transmission

▪ New switched reluctance motor

– Fast: 2x the speed of their previous motor

▪ Target to a Xilinx® Zynq® SoC 7045 device

– Complex: 4 different control strategies

▪ Needed to get to market quickly

▪ No experience designing FPGAs!

✓ Designed integrated E-drive: Motor, power electronics 

and software

✓ 4 different control strategies implemented

✓ Done in 1.5 years with 2FTE’s

✓ Models reusable for production

✓ Smooth integration and validation due to development 

process – thorough validation before electronics are 

produced and put in the testbench

Link to video

https://www.mathworks.com/company/user_stories/university-college-london-improves-computational-literacy-with-online-and-onsite-matlab-training.html
https://www.mathworks.com/videos/faster-and-more-accurate-control-of-switched-reluctance-electric-motors-using-zynq-soc-highlights-121425.html


7

What’s Inside an FPGA SoC?



8

Why use Hardware and Software for Motor Control?

▪ In order to meet increased performance

▪ You need more complex algorithms

▪ Running on the right hardware



9

▪ Why use Hardware and Software for motor 

control?

▪ Why use Model-Based Design for motor control?

▪ How to use Model-Based Design for motor 

control?



10

Challenges in Developing Advanced Motor Control Algorithms

▪ Integration requires collaboration

▪ Validation of design specifications with limits on access to test hardware

▪ How to make design decisions?



11

Why use Model-Based Design to Develop Motor Control 

Applications?

▪ Enables early validation of specifications using simulation months before 

hardware is available. 

▪ Dramatically improves design team collaboration and designer productivity 

by using a single design environment. 

▪ Reduces hardware testing time by 5x by shifting design from lab to the 

desktop



12

Components of Motor Control Production Applications

ARM

Programmable Logic

Production

System

Code

AXI Bus

IP1AXI 

Interface

Algorithm 

HDL

Linux 

Driver

Algorithm

C

IP2

IP3

SystemMotor



13

ARM

Programmable Logic

From Simulation to Production

ProductionSimulation

Simulink

Embedded Coder

HDL Coder

Algorithm

Model

Algorithm 

Model

System

Code

AXI Bus

IP1AXI 

Interface

Algorithm 

HDL

Linux 

Driver

Algorithm

C

IP2

IP3

Motor

Model
SystemMotor



14

From Simulation to Prototype to Production

Production

Programmable 

Logic

Prototype

ARM core

Simulation

Simulink

Embedded Coder

HDL Coder

AXI 

Interface

Algorithm

Model

Algorithm 

Model

Linux 

Driver

AXI Bus

Motor

Model
System

ARM core

System

Code

Vivado
Algorithm

C

Programmable Logic

VivadoAlgorithm 

HDL

AXI Bus

IP1AXI 

Interface

Algorithm 

HDL

Linux 

Driver

Algorithm

C

IP2

IP3

MotorMotor



15

▪ Why use Hardware and Software for motor 

control?

▪ Why use Model-Based Design for motor control?

▪ How to use Model-Based Design for motor 

control?



16

Load motor

Motor under test 

(with encoder)

ZedBoard

FMC module: 

control board + 

low-voltage board

Mechanical 

coupler

Zynq SoC 
(XC7Z020)



17

Embedded System

SoC

Hard Processor

Linux / VxWorks

Reference

Framework

Programmable

Logic

Reference

Framework

System Simulation Test Bench

Conceptual workflow targeting hardware and software

Model of 

Motor & 

Dyno

Motor & 

Dyno

Hardware

SoC

Programmable

Logic

Algorithm

HDL

Code

Algorithm

C

Code

Algorithm

C

Model

Algorithm

HDL

Model

Algorithm 

developer

Hardware 

designer

Embedded 

software

engineer



18



19

Building a System Simulation Test Bench

▪ How do I get a good model of the motor?

▪ How can I make sure it matches real-world behaviour?

System Simulation Test Bench

Model of 

Motor & 

Dyno

Algorithm

C

Model

Algorithm

HDL

Model

Algorithm 

developer



20

What’s Inside a Motor Model?



21

What’s Inside a Motor Model?



22

What’s Inside a Motor Model?



23

What’s Inside a Motor Model?



24

What’s Inside a Motor Model?

▪ How can we find the parameters we 

need for the model?



25

How to Find the Right Motor Parameters?

▪ Ask the motor designer

▪ From manufacturer’s data sheets

▪ From direct bench-top measurements or test data 



26

Modelling a PMSM with limited supplier data

Tune to measurement data – Step 1

Locked rotor

Step voltage test

R=V/I

L=R*tc

tc



27

Modelling a PMSM with limited supplier data

Tune to measurement data – Step 2 𝑲𝒕𝝎

Back EMF test



28

Modelling a PMSM with limited supplier data

Tune to measurement data – Step 3

Friction Damping 

coefficient 

= gradient



29

Modelling a PMSM with limited supplier data

Tune to measurement data – Step 4

Speed run-down test
Inertia = 

Torque/gradient



30

Estimating Parameters from measured data using Simulink 

Design Optimization

▪ Use simulation-based 

optimisation

– match model parameters to 

real-world data



31

Adding Implementation Detail to Algorithms

▪ Which parts of my algorithm should be implemented in C, and which in HDL?

System Simulation Test Bench

Model of 

Motor & 

Dyno

Algorithm

C

Model

Algorithm

HDL

Model

Algorithm 

developer



32

Strategies for Partitioning an Algorithm Between Hardware 

and Software

▪ Use experience

– some timing requirements are known e.g. current control @25kHz

▪ Put everything on the software core and profile it 

– where are the bottlenecks? 

– Can these be moved to hardware?

▪ Put algorithms where the data comes in

– minimise data transfer

▪ Monitor resource usage and move things when you are near the limit



33

Hardware/Software Partitioning

Target to ARM

Target to 

Programmable 

Logic



34

Floating-point to fixed-point conversion

▪ Is it always necessary? 

▪ Possibly, to meet resource constraints on the 

hardware

▪ Fixed-Point Designer™ helps automate the 

conversion process

▪ HDL Coder™ native floating-point technology 

can generate HDL code from your floating-

point design



35

Code Generation



36

Zynq Model-Based Design Workflow

HDL IP Core

Generation

MATLAB® and Simulink®

Algorithm and System Design

Vivado

Integration

SW Interface 

Model Generation

Zynq Platform

SW BuildFPGA Bitstream

External Mode

PIL

▪ Real-time Parameter 

Tuning and Verification

– External Mode

– Processor-in-the-loop

▪ More probe and debug 

capability in the future



37

ti



38

▪ Why use Hardware and Software for motor 

control?

▪ Why use Model-Based Design for motor control?

▪ How to use Model-Based Design for motor 

control?



39

Why use Model-Based Design to develop motor control 

applications?

▪ Enables early validation of specifications using simulation months before 

hardware is available. 

▪ Dramatically improves design team collaboration and designer productivity 

by using a single design environment. 

▪ Reduces hardware testing time by 5x by shifting design from lab to the 

desktop


