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Agenda

▪ Why use Hardware and Software for motor 

control?

▪ Why use Model-Based Design for motor control?

▪ How to use Model-Based Design for motor 

control?
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Key trend: Increasing demands from motor drives

▪ Increased performance targets 

require advanced algorithms

▪ Advanced algorithms require faster 

computing performance.

– Field-Oriented Control

– Sensorless motor control

– Vibration detection and suppression

– Multi-axis control
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Where are algorithms being run to gain performance?

▪ Multi-core microprocessors

▪ Multi-processor systems

▪ FPGAs

▪ ASICs

▪ System-on-Chip devices (SoCs)

▪ GPUs*

▪ Hardware and Software algorithms must be designed together

*particularly for vision applications
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Punch Powertrain develops complex SoC-based motor 

control

▪ Powertrains for hybrid and electric vehicles

▪ Need to increase power density and efficiency at 

a reduced cost

– Integrate motor and power electronics in the transmission

▪ New switched reluctance motor

– Fast: 2x the speed of their previous motor

▪ Target to a Xilinx® Zynq® SoC 7045 device

– Complex: 4 different control strategies

▪ Needed to get to market quickly

▪ No experience designing FPGAs!

✓ Designed integrated E-drive: Motor, power electronics 

and software

✓ 4 different control strategies implemented

✓ Done in 1.5 years with 2FTE’s

✓ Models reusable for production

✓ Smooth integration and validation due to development 

process – thorough validation before electronics are 

produced and put in the testbench

Link to video

https://www.mathworks.com/company/user_stories/university-college-london-improves-computational-literacy-with-online-and-onsite-matlab-training.html
https://www.mathworks.com/videos/faster-and-more-accurate-control-of-switched-reluctance-electric-motors-using-zynq-soc-highlights-121425.html
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What’s Inside an FPGA SoC?



8

Why use Hardware and Software for Motor Control?

▪ In order to meet increased performance

▪ You need more complex algorithms

▪ Running on the right hardware
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▪ Why use Hardware and Software for motor 

control?

▪ Why use Model-Based Design for motor control?

▪ How to use Model-Based Design for motor 

control?
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Challenges in Developing Advanced Motor Control Algorithms

▪ Integration requires collaboration

▪ Validation of design specifications with limits on access to test hardware

▪ How to make design decisions?
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Why use Model-Based Design to Develop Motor Control 

Applications?

▪ Enables early validation of specifications using simulation months before 

hardware is available. 

▪ Dramatically improves design team collaboration and designer productivity 

by using a single design environment. 

▪ Reduces hardware testing time by 5x by shifting design from lab to the 

desktop
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Components of Motor Control Production Applications
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From Simulation to Prototype to Production
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▪ Why use Hardware and Software for motor 

control?

▪ Why use Model-Based Design for motor control?

▪ How to use Model-Based Design for motor 

control?
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Embedded System
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Building a System Simulation Test Bench

▪ How do I get a good model of the motor?

▪ How can I make sure it matches real-world behaviour?

System Simulation Test Bench
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What’s Inside a Motor Model?
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What’s Inside a Motor Model?
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What’s Inside a Motor Model?



23

What’s Inside a Motor Model?
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What’s Inside a Motor Model?

▪ How can we find the parameters we 

need for the model?
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How to Find the Right Motor Parameters?

▪ Ask the motor designer

▪ From manufacturer’s data sheets

▪ From direct bench-top measurements or test data 



26

Modelling a PMSM with limited supplier data

Tune to measurement data – Step 1

Locked rotor

Step voltage test

R=V/I

L=R*tc

tc
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Modelling a PMSM with limited supplier data

Tune to measurement data – Step 2 𝑲𝒕𝝎

Back EMF test
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Modelling a PMSM with limited supplier data

Tune to measurement data – Step 3

Friction Damping 

coefficient 

= gradient
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Modelling a PMSM with limited supplier data

Tune to measurement data – Step 4

Speed run-down test
Inertia = 

Torque/gradient
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Estimating Parameters from measured data using Simulink 

Design Optimization

▪ Use simulation-based 

optimisation

– match model parameters to 

real-world data
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Adding Implementation Detail to Algorithms

▪ Which parts of my algorithm should be implemented in C, and which in HDL?

System Simulation Test Bench

Model of 

Motor & 

Dyno

Algorithm

C

Model

Algorithm

HDL

Model

Algorithm 

developer



32

Strategies for Partitioning an Algorithm Between Hardware 

and Software

▪ Use experience

– some timing requirements are known e.g. current control @25kHz

▪ Put everything on the software core and profile it 

– where are the bottlenecks? 

– Can these be moved to hardware?

▪ Put algorithms where the data comes in

– minimise data transfer

▪ Monitor resource usage and move things when you are near the limit
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Hardware/Software Partitioning

Target to ARM

Target to 

Programmable 

Logic
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Floating-point to fixed-point conversion

▪ Is it always necessary? 

▪ Possibly, to meet resource constraints on the 

hardware

▪ Fixed-Point Designer™ helps automate the 

conversion process

▪ HDL Coder™ native floating-point technology 

can generate HDL code from your floating-

point design



35

Code Generation
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Zynq Model-Based Design Workflow

HDL IP Core

Generation

MATLAB® and Simulink®

Algorithm and System Design

Vivado

Integration

SW Interface 

Model Generation

Zynq Platform

SW BuildFPGA Bitstream

External Mode

PIL

▪ Real-time Parameter 

Tuning and Verification

– External Mode

– Processor-in-the-loop

▪ More probe and debug 

capability in the future
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ti
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▪ Why use Hardware and Software for motor 

control?

▪ Why use Model-Based Design for motor control?

▪ How to use Model-Based Design for motor 

control?



39

Why use Model-Based Design to develop motor control 

applications?

▪ Enables early validation of specifications using simulation months before 

hardware is available. 

▪ Dramatically improves design team collaboration and designer productivity 

by using a single design environment. 

▪ Reduces hardware testing time by 5x by shifting design from lab to the 

desktop


