THALES

Hardware Software Co-Design and Testing Using Simulink® Real-Time™

Paul Berry and Brian Steenson

Process Development

- Introduction to THALES
- Overview of design process
- Development of autocode capability

Real Time Testing for the Lightweight Multirole Missile

- Guidance and control algorithm design
- Guidance and control algorithm implementation
- Guidance and control algorithm testing

THALES in the UK

Defence

Transportation

Security

Avionics Systems Air Traffic Management In-Flight Entertainment **Electrical Systems** Training and Simulation

Radar Watchkeeper Command and Control Cameras and Sensors Sonar Systems **Threat Warning** Short Range Defence

Signalling Systems

Integrated Comms & Supervision Systems

Revenue Collection Systems

Secure Communication

Network & Infrastructure Systems

Protection Systems

Critical Information Systems & Cybersecurity **Telecoms**

Observation

Infrastructure

Navigation

THALES in Belfast

This document may not be reproduced, modified, adapted, published, translated, in any way, in whole or in part or disclosed to a third party without the prior written consent of Thales - © Thales 2017 All rights reserved

Effectors

Platforms

Space

Model Based Algorithm Development

Model Based Algorithm Development

- Remove human error
- Reduced code development time
- Early prototype on hardware
- Improved efficiency
- Fast turn around between iterations
- Common test environment
- Improved traceability

Evolution of Autocoding Capability

2005: Land Based Systems

- Algorithm development for target tracking algorithm
- Implemented in C from Simulink
- Floating point C code

James -

2007: Missile Systems

- Guidance algorithm implemented in C from Simulink
- Target-specific libraries used to optimise speed
- Fixed point C code

2009: Hardware/Software Partitioning

- Motor control algorithms developed in Simulink
- Autogenerated C code used to quickly prove concept
- Final solution partitioned between C and HDL

2013: FreeFall-LMM rapid development

- Rapid prototyping of guidance and control algorithms
- Autogenerated C code
- 6 months development from concept to flight trials

Evolution of Autocoding Capability

2017: Next Generation Beam Steering

- Updated algorithms developed for new guidance unit
- µrad positional accuracy and stabilisation error
- Autocoded algorithms ported to System on Chip
- Improved linkages between model and implementation

Missile state machines

- Currently using legacy state machine layer
- Bring this logic within MBD process as complexity increases

Digital laser scanning

- Very high rate (ns), high precision control
- High fidelity simulation crucial to understanding
- MBD approach essential for rapid prototyping and implementation

THALES

Real Time Testing for the Lightweight Multirole Missile

Guidance and control algorithm design

- (Sub)system model development
- Algorithm development
- Performance verification in non-real time Simulink 6DOF simulation
- Generate algorithm autocode (C or HDL)

Guidance and control algorithm testing

- Real time simulator development
 - Real time 6DOF simulation
 - Hardware emulators
- Hardware in the Loop testing
- Verification and Validation

THALES

Develop subsystem models:

- Aerodynamics
- Structural bending
- Inertial Measurement Unit (IMU)
- Laser Information Field (LIF)
- Semi-Active laser (SAL)
- Control Actuation System (CAS)
- Rocket motor(s)
- Missile dynamics
- Canister exit model
- Launch platform
- Guidance algorithms

Guidance algorithm design

- Controllers developed at key operating points
- Based on a continuous linearised/idealised model
- Algorithm design iteration may be required
- Discrete versions of algorithms created
- Performance quantified in 6DOF simulation
- Iteration may be needed

Algorithm

Testing in non-real time - Simulink 6DOF Simulation

Autocode algorithms onto target - C

- Common autocode configuration settings across projects for code standard consistency
- Run Monte Carlo simulations replacing algorithms with autogenerated code
- Open loop tests using 6DOF generated test vectors performed on target hardware
- Verify executable code integrity and assess coverage

Autocode algorithms onto target - HDL

- Common autocode configuration settings across projects for code standard consistency
- Fixed point model required
- Open loop tests using 6DOF generated test vectors performed on target hardware
- Check executable code integrity and assess coverage

LMM Laser Beam Riding (LBR) HIL key components

Missile Electronics

- Guidance Processing Unit
 - Generate elevator angle demands
 - Simultaneously roll stabilise missile nose
- Fin Control Actuation System
 - Implement fin control algorithms

System Emulators

- Laser Information Field emulator
 - Provides missile with its position
- Inertial Measurement Unit emulator
 - Provides missile with rates and accelerations for inertial reference calculations

- Simulink Real Time version of 6DOF simulation created
 - May require simplification Larger step-size, remove high frequency dynamics, limit real time comms
- Model subsystems can be gradually removed from the 6DOF simulation and replaced with hardware or hardware emulators
- Run Monte-Carlo real time simulations on real time target
- Simulation version of algorithms can run on real time target in parallel to permit debugging

LMM Laser Beam Riding (LBR) HIL simulation

THALES

Verification and validation

- HIL simulation is a key part of pre-flight tests
- Hardware stimulated closed-loop with realistic flight data
- Failure mode testing
- Iterative development 6DOF (both non-real time and real time)
 validated against flight telemetry data
- Linkage from algorithm design model to hardware implementation tests accelerates rapid prototyping development and testing

Missile Hardware

Real Time Computer

Real Time Sensor Emulation

Real Time Scenario Generation

- Remove human error
- Reduced code development time
- Early prototype on hardware
- Improved efficiency
- Fast turn around between iterations
- Common test environment
- Improved traceability

