

Speeding up Simulink

Murali Yeddanapudi

© 2017 The MathWorks, Inc.

Agenda

- Typical use cases
- Accelerator mode
- Performance Advisor
- Fast Restart and parsim
- Incremental workflows
- Solver Profiler

Agenda

- Typical use cases
- Accelerator mode
- Performance Advisor
- Fast Restart and parsim
- Incremental workflows
- Solver Profiler

Typical simulation use cases

Edit-Sim-Repeat

Tune-Sim-Repeat

Edit-Sim-Repeat

Tune-Sim-Repeat

Edit-Sim-Repeat

Tune-Sim-Repeat

Edit-Sim-Repeat

Tune-Sim-Repeat

Agenda

- Typical use cases
- Accelerator mode
- Performance Advisor
- Fast Restart and parsim
- Incremental workflows
- Solver Profiler

Accelerator Mode

Why would Simulink speed up?

- JIT compiles (or generates C-code for) portions of the model
- Running compiled code has less overhead

What's the tradeoff?

- There is overhead to generate code
- Some run time diagnostics are disabled, e.g., inf/nan checking
- May not speedup all models

Introduced before R2006a

Help Search: how acceleration modes work

Performance Advisor

Why would Simulink speed up?

- Checks your model for speedup options
- Validates its own advice, only applies changes that:
 - give the same answer
 - and improve speed

What's the tradeoff?

- Takes time run the analysis
- Not comprehensive
 - Trading off fidelity for speed is not part of performance advisor

R2012b

Rough Comparison of Simulation Modes

Accelerator is faster

- Unless your simulations are short
- With JIT, accelerator is faster than normal mode in many more cases

Rapid-accelerator has the least per-step overhead but the most init overhead

Just-In-Time Accelerator Mode Introduced in R2016b

Questions

Agenda

- Typical use cases
- Accelerator mode
- Performance Advisor
- Fast Restart and parsim
- Incremental workflows
- Solver Profiler

Fast Restart

Why would Simulink speed up?

- Avoids recompile between simulation runs
- Works with Accelerator mode

What's the tradeoff?

Cannot edit the model when in fast restart mode

Help Search: fast restart

parsim

R2017b R2017a

Why would Simulink speed up?

- Runs simulations in parallel using MATLAB Parallel Computing
- Parallelization details are automatically handled
 - if your model works with sim ...

... it works with parsim

```
for i = 10000:-1:1
    in(i) = Simulink.SimulationInput('my_model');
    in(i) = in(i).setVariable('my_var', i);
end
out = parsim(in);
```

What's the tradeoff?

- Overhead of setting up parallel pool
- Overhead of starting simulations on the workers
- Needs scripting in MATLAB

Help Search: parsim

parsim : Benefits

```
for i = 10000:-1:1
    in(i) = Simulink.SimulationInput('my_model');
    in(i) = in(i).setVariable('my_var', i);
end
out = parsim(in);
```


parsim manages the details of running parallel simulations

... so you can focus on the design tasks

parsim: automates book-keeping details (1)

- Handles cross platform details
 - Use parsim from a Windows desktop to run simulations on Linux Cluster
- Handles model dependencies
 - MATLAB Code, Libraries, S-Functions, ...
- Integrated with Simulink Cache
- Leverages model reference parallel build

parsim: automates book-keeping details (2)

- Brings back log files from the workers
 - Appends run id to make them unique


```
>> out(198)

Simulink.SimulationOutput:

tout: [141565x1 double]
logsout: [1x1 Simulink.SimulationData.DatasetRef]

SimulationMetadata: [1x1 Simulink.SimulationMetadata]
ErrorMessage: [1x15267 char]
```

Automatically get references to logged files

R2017b

parsim: automates book-keeping details (3)

SIMULATION MANAGER Show progress and error diagnostics Open Sele Open the model and apply the changes specified for the selected simulation - Setups up model to run locally to debug CSTR **Total Simulations** 200 00:03:00 Elapsed Time Number of Active Workers 6 Errors/Aborted (50) Completed (150) Queued (0) CSTR - Simulink prerelease use Estimated Time Remaining 00:00:00 图-四-图中中全图图-图-中华图》中国 Run ID Status Progress Elapsed Time Machine CSTR 00:00:06 rahulk-deb8-64 ⊕ CSTR > Completed 00:00:06 rahulk-deb8-64 100% 0 Completed 00:00:06 rahulk-deb8-64 100% = = rahulk-deb8-64 Completed with errors 00:00:06 Completed with errors 00:00:06 rahulk-deb8-64 100% rahulk-deb8-64 File Edit View Tools Add Help Completed with errors 00:00:06 100% Completed 00:00:01 rahulk-deb8-64 100% Completed 00:00:01 rahulk-deb8-64 100% Completed 00:00:01 rahulk-deb8-64 Base Wo Column View: Dictionary Objec - Show Details 11 object(s) SIMULATION DETAILS Data Typ Parameters Timing Info Diagnostics Run ID: Copyright 2012-2015 The MathWorks, Inc. ⊞ DeltaH -11.92 Status: errors ☐ FeedNoisePower Variable 1.618 2.666 Variable ₩ FeedTemp0 Elapsed Time: 00:00:06 34930800 double

R2017b

Visualizing Results


```
parsim : customization(1)
```

TransferBaseWorkspaceVariables

```
outs = parsim(inps, 'TransferBaseWorkspaceVariables','on', ...)
```

UseFastRestart

```
outs = parsim(inps, 'UseFastRestart','on', ...)
```


parsim : customization(2)

SetupFcn

```
setupFcn = @()addpath('myProjectDir')
outs = parsim(inps, 'SetupFcn', setupFcn, ...)
```

CleanupFcn

```
cleanupFcn = @()rmpath('myProjectDir')
outs = parsim(inps, 'CleanupFcn', cleanupFcn, ...)
```


SimulationOutput object

Trial>> simOut

Simulink.SimulationOutput:

ScopeData1: [1x1 Simulink.SimulationData.Dataset]

ScopeData2: [1x1 struct]
tout: [1353x1 double]
xout: [1x1 struct]
yout: [1x1 struct]

SimulationMetadata: [1x1 Simulink.SimulationMetadata]

ErrorMessage: [0x0 char]

- Contains all logged simulation data
- Use dot notation to access the data
- Introduced in R2009a

SimulationInput object

A SimulationInput object 'simInp' encapsulates all input to one simulation

Array of simInps encapsulate all inputs to multiple simulations

```
simOuts = sim(simInps)
```

* Simulations are run sequentially

Simulations are run in **parallel** if MATLAB parallel computing tools are available, serially otherwise

SimulationInput Object

SimulationInput with properties:

PreSimFcn: []
PostSimFcn: []
UserString: ''

```
Specify MATLAB functions
to run before and after
each f
cus Add a brief UserString
pi describing these changes
for easy reference

as externs

as externs

as externs

as externs

as externs
```


PreSimFcn

Use PreSimFcn to offload parameter computations to parallel workers

```
for i = 10:-1:1
    in(i) = Simulink.SimulationInput(i);
    in(i).PreSimFcn = @(inp) myPreSimFcn(inp, i);
end

function simInp = myPreSimFcn(rawSimInp, runId)
    prmValue = expensiveComputation(runId);
    simInp = rawSimInp.setBlockParameter( ...
        [rawSimInp.ModelName,'/my_block'], 'prmName', prmValue);
end
```


PostSimFcn

- use PostSimFcn to post-process raw simulation outputs in parallel
- reduce data returned back from workers

```
>> inps = Simulink.SimulationInput('myModel');
>> ...
>> inps.PostSimFcn = @(out) myPostSimFcn(out);
>> outs = parsim(inps);
>> outs(i).result

function simOut = myPostSimFcn(rawSimOut)
        simOut.result = expensivePostProc(rawSimOut.lotsOfLogsOut);
end
```


Questions

Agenda

- Typical use cases
- Accelerator mode
- Performance Advisor
- Fast Restart and parsim
- Incremental workflows
- Solver Profiler

What is an incremental workflow?

Only perform an action when necessary;

reuse and cache as much as possible

Model reference: incremental workflows

- Incremental Loading
- Incremental Update Diagram
- Incremental Code Generation
- Selective acceleration

Model Reference: Performance

How to reduce first time cost?

Simulink Cache

Parallel Model Reference Build

Simulink Cache

Simulink Cache

repackage

extract

Sharing build artifacts avoids rebuild

Simulink Cache

Why would Simulink speed up?

- Sharing build artifacts reduces first time cost
- Integrated into Simulink Projects and parsim

What's the tradeoff?

- Extra work needed to manage .slxc files
 - If Simulink Projects is not used

Help Search: simulink cache

Parallel Model Reference Builds

Model Reference Parallel Build User example

Approximately 400 referenced models

Model Update Time comparison of first-time build with and without PCT

Performance Advisor: Check model reference parallel build

Performance Advisor: Check model reference parallel build

- Performance Advisor estimates the speedup with more cores
- The estimated speed up with 4 cores is ~2.6
 - Close to the measured value ~2.8
- Given ~120 cores, the estimated speed up is ~42
 - => Build time goes from ~3400s to ~80s

Analysis and Advice:

Estimate build time speedup using number of 4 cores of this CPU: ---- --2.6268x Estimate build time speedup using 348 workers: ---- --42.6475x

Estimated build times for various worker counts are as follows:

Model Reference Parallel Build

Why would Simulink speed up?

- Model reference targets are built in parallel
- Use Performance Advisor to check if your large models can benefit from this option

What's the tradeoff?

- Speedup is model dependent
- Requires MATLAB Parallel Computing

🚳 Configuration Parameters: sldemo_mdlref_basic/Configuration (Active) Q Search Solver Options for all referenced models Data Import/Export Rebuild: If any changes in known dependencies of Optimization Diagnostics Parallel Hardware Implementation Enable parallel model reference builds Model Referencing MATLAB worker initialization for builds: Copy b Simulation Target Code Generation Enable strict scheduling checks for referenced Coverage

Help Search: model reference parallel build

Questions

Agenda

- Typical use cases
- Accelerator mode
- Performance Advisor
- Fast Restart and parsim
- Incremental workflows
- Solver Profiler

Solver Profiler

Why would Simulink speed up?

- Identifies parts of the model causing solver to slow down
 - too many resets
 - too many zero crossings etc.

What's the tradeoff?

- Profiling overhead
- Requires domain knowledge to optimally fix the issues identified by the Solver profiler.

Help Search: solver profiler

Summary

Use Case Recommended Features Normal mode **Smart Editing** Edit-Sim-Repeat Accelerator mode Model Reference Tune-Sim-Repeat Performance Advisor Simulation Data Inspector **Fast Restart** Accelerator + Fast Restart Solver Profiler Multi-Sim parsim parsim + Accelerator + Fast Restart parsim + Rapid Accelerator + Up-To-Date-Check-Off

Editing at the Speed of Thought with Simulink

Learn about the latest smart editing features that have been added to Simulink to increase your modeling speed.

Thank you