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Model-Based Design has become a standard in the aerospace industry. A system 
model is at the center of the development process, supporting the design of complex 
algorithms combined with physical hardware. In addition to the advantages that 
come from modeling control algorithms, modeling plants can lead to more robust 
designs. Using commercial-off-the-shelf (COTS) software allows both the controller 
and hardware to be modeled and simulated in a single environment. Modeling 
plants in the same simulation environment as an embedded controller enables 
engineers to test a controller with multiple plant parameters, as well as simulating 
with nominal or ideal values. Modeling variable physical parameters provides a 
better representation of what will happen in real hardware. Monte Carlo analysis is 
a standard method of simulating variability that occurs in real physical parameters. 
In aerospace applications, Monte Carlo techniques can be used to ensure high-
quality, robust designs. Even using a shared COTS environment, fully testing or 
optimizing a design can take thousands of simulation iterations and days to 
complete. Depending upon the complexity of the system and fidelity of the model, 
each iteration could take hours to run. Simulation time can become a critical 
bottleneck in the development process. Being able to run multiple, independent 
scenarios in parallel can lessen this time significantly. In this paper, we will discuss 
techniques for modeling, optimizing, and testing plant models to build better system 
models in MATLAB® and Simulink® from The MathWorks. We will also present 
new techniques for speeding up Monte Carlo techniques by using high-performance 
computing clusters. 

I. Introduction 
Model-Based Design has become a standard in the aerospace industry.1,2,3 A system model is at the 

center of the development process, supporting the design of complex algorithms combined with physical 
hardware. In addition to the advantages that come from modeling control algorithms, modeling plants can 
lead to more robust designs. The first design an engineer creates is rarely the design that will end up in 
production. The efficient development of complex systems requires many iterations to improve upon the 
initial design. This requires an ability to rapidly set up tests, simulate, and evaluate the test results. A 
control algorithm designed with an inaccurate or nonexistent plant model is unlikely to work properly, and 
a system designed without the controller cannot be properly tested. Using commercial-off-the-shelf (COTS) 
software that allows both the controller and hardware to be modeled and simulated in a single environment 
enables faster development and higher-quality designs by allowing testing to happen on the entire system 
early in the design cycle.4,5,6,7 Problems or errors are found before implementation on hardware, when they 
are both cheaper and faster to fix. 

Aerospace systems are generally composed of numerous subsystems, each of which may be designed 
by a different team of engineers, sometimes spread around the globe. The different teams must work 
together to optimize the design, or even to get it to function according to specified requirements. It is 
necessary to perform tradeoff analyses at the system level, including all the subsystems that are involved. 
Without a single, standardized modeling environment, co-simulation techniques or manual calculations are 
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needed. These can be difficult or very time consuming. A shared modeling environment and common 
modeling standards can also help teams communicate quickly and effectively across organizational, 
linguistic, and cultural barriers.  

Modeling plants in the same simulation environment as an embedded controller enables engineers to 
test a controller with multiple plant parameters, as well as to simulate with nominal or ideal values. 
Modeling variable physical parameters provides a better representation of what will happen in real 
hardware. Monte Carlo analysis is a standard method of simulating variability that occurs in real physical 
parameters. In aerospace applications, Monte Carlo techniques can be used to ensure high-quality, robust 
designs. Even using a shared COTS environment, fully testing or optimizing a design can take thousands of 
simulation iterations and days to complete. Depending upon the complexity of the system and the fidelity 
of the model, each iteration could take hours to run. Simulation time can become a critical bottleneck in the 
development process. Being able to run multiple, independent scenarios in parallel can lessen this time 
significantly. New high-performance computing tools and multiprocessor machines have eliminated the 
time and resource limitations in many cases by providing the processing power needed to vary large 
numbers of parameters in complex dynamic models.  

In this paper, we discuss techniques for modeling, optimizing, and testing plant models to build better 
system models in MATLAB® and Simulink® from The MathWorks. We also present new techniques for 
speeding up Monte Carlo analyses by using high-performance computing clusters. 

II. Monte Carlo Methods 
Monte Carlo methods may be the most commonly applied statistical method in engineering and science 

disciplines, used in everything from financial modeling to theoretical physics problems. Literally tens of 
thousands of books on technical subjects reference them. While many specific applications exist, in their 
simplest form, Monte Carlo methods involve using random numbers and probability distributions to 
explore problems.8 In this paper, we discuss the use of Monte Carlo techniques as applied to system 
simulation. 
 Among the numerous benefits of using Monte Carlo methods for simulation is that it allows you to 
model systems that are too complex for an analytic solution. It also allows you to simulate uncertainty. 
Even when a design has few uncertain parameters, the conditions or environment it will operate in almost 
always contains uncertainty that needs to be considered; one common example of uncertainty is the wear 
on a physical system, which will tend to erode performance over time. When attempting to design a system 
that will work over a long period of time, simulating how it will perform over its entire lifetime involves all 
kinds of uncertainty. One can use Monte Carlo methods to predict the likelihood of failure after a certain 
time. 

A third benefit is providing increased confidence that a model is robust using Monte Carlo testing. An 
example of this is the process of taking a completed algorithm design and testing it closed-loop using not 
only nominal parameter values, but random values that span the entire range of possible situations the 
design will encounter. Take the previously published example of a DC motor.9,10 Every physical component 
used to make the motor contains some tolerance on its dimensions. Simulating solely with the nominal 
values of each dimension may not give an accurate representation of the range of performance of the motor. 
One could test the minimum and maximum values of each dimension, but that would also not necessarily 
create an accurate model, unless each of those dimensions followed a uniform distribution. As many 
physical parameters fit a normal, or Gaussian, distribution, using Monte Carlo techniques to generate 
random values based on that distribution and then simulating with those will give a much more realistic 
prediction of how the motor will behave when built.  

One drawback of Monte Carlo simulations is that they can involve running thousands of iterations of a 
single model. In fact, the more complex the system being simulated or the more uncertainty it contains, the 
more simulations you will have to run. It can sometimes take days to run a complex model hundreds or 
thousands of times.  

In this paper, we focus on the third benefit of Monte Carlo simulation for control system design, as well 
as mitigating the main drawback of time needed to complete the simulations. We describe using Monte 
Carlo methods to ensure a plant model more accurately reflects real-world plants. We then describe how 
Monte Carlo testing can use that same plant model to test an algorithm model for robustness.  
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III. Distributed Computing 
Running simulations in a high-performance computing (HPC) environment was once prohibitively 

expensive due to the cost of installing and maintaining sufficient computing power. HPC was available 
mainly to government agencies and large research laboratories, the only groups with the means to purchase 
supercomputers. Today, most supercomputers have been replaced by COTS computer clusters that provide 
affordable, high-performance, distributed computing environments. With the increased availability of 
multicore and multiprocessor computers, and the growth of computing clusters, many organizations already 
have vast CPU processing power installed on site.  

Though the processing power is available, running an individual engineer’s simulations on the cluster or 
on multiple processors is not always straightforward, particularly from within a COTS simulation software 
tool. One difficulty engineers encounter is that the time to set up and maintain their COTS simulation 
software on a cluster can eat into the time savings the additional computing power can provide.11 In fact, 
the difficulty in setting up distributed applications is still a barrier to tapping the processing power in one 
computer, let alone a cluster of perhaps hundreds. Yet, taking advantage of these computing resources is a 
critical step to increasing the number of Monte Carlo simulations one can reasonably run. 

Some computing problems are called embarrassingly parallel or coarse-grained because they can be 
segmented easily to run on several nodes without communication, shared data, or synchronization points 
between the nodes. The run-time on each node dominates the time needed to start and stop the application. 
Monte Carlo simulations fall into this category, and thus are an obvious candidate to run on computing 
clusters. Some form of integration between the simulation software and the HPC cluster is needed to 
maximize the investment in computing power.  

One possibility to run simulations on a cluster without needing COTS software installed on every node 
is to compile the model into an executable.12 For example, one can generate ANSI/ISO C/C++ code from 
Simulink models. The separate executable can be executed from a DOS command line (on Windows® 
platforms), thus requiring scripts to get data into and out of the executable. While this technique is very 
useful for accelerating simulations, to use it to run Monte Carlo analyses, the user must script the parameter 
variations and collection of results from the multiple executables into a usable format. If using a remote 
cluster, additional scripting may be needed for communication with a scheduler and job creation. This can 
be tedious and often requires help from a cluster administrator to customize a particular simulation setup.  

SystemTest™ 13  and MATLAB Distributed Computing Server™ 14  are examples of COTS tools that 
eliminate the tedious scripting and compilation needed to use standalone executables. These tools make it 
possible to set up a series of parameters in a graphical user interface (GUI) to vary in a model for Monte 
Carlo testing and then define it as a job to be run on multiple processors. Launching the job from the GUI 
eliminates the scripting needed to communicate to a cluster, create a job, and compile the results from 
individual simulation runs. This makes it possible to distribute complete Simulink models for execution in 
a cluster or in a multicore or multiprocessor computer without needing to write any lines of code. This 
integration of COTS simulation tools with HPC schedulers is another time-savings for engineers looking to 
speed up Monte Carlo runs. 

IV. Case Study 

A. The Model 
The system we are analyzing is a hydromechanical actuator that controls the angle of an aileron. The 

purpose of this model is to analyze the effects of parameter variation in the servo-valve, the analog circuit 
controlling the opening of the servo-valve, and the effects of varying the load on the aileron. We will study 
the effects these parameters have on the system’s stability and performance by examining the rise time and 
settling time. 
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Using COTS physical modeling 
tools,15,16,17,18 we developed a model of 
the plant and the controller in Simulink. 
We chose to use the physical modeling 
tools to develop a high fidelity plant 
model and simulate how the plant will 
behave in the real world as closely as 
possible. Figure 1 shows the complete 
system model, including the servo-
valve, double-acting hydraulic cylinder, 
aileron, and the analog circuit 
implementation of the controller.  
Figure 2 shows in detail the analog 
circuitry of the controller, implemented 
using SimElectronics™. 

By using a closed-loop model, we 
are able to vary both controller and 
plant parameters and simulate the entire 
system’s performance in one 
environment. We have chosen 
parameters in both the plant and the 
controller to vary using Monte Carlo 

techniques. We modeled these parameters using nominal values, but know that real measured values will 
vary. We also have some tolerance data on how much these might vary in real, physical components. We 
need to use this data to understand how they could impact the performance of the system. 

B. The Monte Carlo Test 
To examine the known variation in these physical parameters, we set up a Monte Carlo test in 

SystemTest. We used Probability Distribution test vectors and some MATLAB code to set it up. Our goal 
is to understand the stability of the system and the impact all these parameters’ variation might have on it. 
Using normal (Gaussian), lognormal, and uniform probability distributions, we generated 1000 random 
values for 10 of the parameters. For the final parameter, we wanted to insure we tested specific values, so 
we used a MATLAB expression to generate values that span the entire range of possible values. A Limit 
Check element was used to set pass criteria based on rise time and settling time calculated running with the 
nominal values in the model.  

 
Figure 1.  Model of a closed-loop aileron system. Blocks 
with parameters of interest are labeled with numbered 
circles: 1-6) hydraulic servo-valve parameters, 7-10) 
analog circuit implementation of the controller, 11) 
aerodynamic load. 

 
Figure 2.  Model of the analog circuit implementation of the controller. Blocks with parameters of 
interest are labeled with numbered circles. 
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Figure 3 shows the flow of our test setup. We are running the 
Simulink model, then calculating the rise and settling times using 
MATLAB, then running a Limit Check element to determine 
whether the test passes or fails. Figure 6 also shows the list of test 
vectors, which are overriding the parameters in the Simulink 
model during the test. An advantage of using a separate test 
executive like SystemTest to run the Monte Carlo test is that it 
does not require us to modify the model under test to vary the 
parameters. Another is that storing the test setup independently of 
the model enables parallel development on the test and the model.   

C. The Results 
The first test took over seven hours to run, which was far too 

long for us. We ran it again on a computing cluster. Using 
SystemTest, we could distribute the test automatically using 
MATLAB Distributed Computing Server without altering our test 
setup in any way. We ran the test on an 8-core cluster, configured 
using two 64-bit Linux machines with four workers on each. This 
resulted in faster completion of just over an hour. The detailed 
results are shown Table 1. 

Note that the speed improvement is not linearly dependent on 
the number of workers. This has been previously reported10,19 and 
is due to the overhead for copying over the files from the host 
machine to each machine on the cluster, transmitting the input and 
output data between the workers and the job manager, and the 
network latency. In general, total simulation time should be 
significantly longer than this overhead to achieve speed benefits 
from distributing tasks. The results obtained here are specific to 
the model and the example cases used. 

Because SystemTest is tightly integrated with Parallel Computing Toolbox and MATLAB Distributed 
Computing Server, the test report and MAT-file of the results are identical to those generated using a single 
processor and taking almost seven times as long to complete.  

The first test also illustrates that our design is quite sensitive to some parameters. Figure 4 illustrates 
one example of the impact on the cylinder force curve. R7, labeled Parameter 8 in Figure 2, caused a lot of 
instability in the cylinder force, causing most test cases to fail. This also lengthened the test, because 
simulating the oscillations in detail made each simulation take longer than it had taken to run using the 
nominal values.  

For the second test, we tightened the tolerance (standard deviation) on the R7 specification by a factor 
of 10. This eliminated the instabilities; however, we still did not meet the rise and settling time tolerances 
we had set (10% from nominal) in almost all cases. The second test took only one hour to run, but, since we 
had access to a cluster, we also ran it in distributed mode and it finished in about 10 minutes time using the 
same cluster described above. Table 1 shows the exact times of this second test as well. 

At this point, further analysis of our design, criteria, and specifications is needed to determine the best 
way to improve our design. This could include 
varying more parameters in our model, re-
examining our controller design, comparing the 
plant model to lab data to ensure our model is 
accurate. We could also apply other control design 
software, such as Simulink Response 
Optimization™ to help improve our design.  

For the purposes of this paper, our testing is 
complete. We have run Monte Carlo tests on a 
substantial set of parameters, found at least one 
component of our design that must have a tight 
tolerance on its value, and shown a technique to 
speed up the testing by almost a factor of 7. 

 
Figure 4. (a) Cylinder force plot using nominal 
parameter values. (b) Representative cylinder 
force plot from first Monte Carlo test. Note the 
frequent oscillations. 

 
Figure 3. Monte Carlo test 
setup in SystemTest. 
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V. Conclusion 
 
This paper discussed three main points: system modeling with accurate plant models, Monte Carlo 

testing, and distributing tests. Putting these together greatly increases the quality of a design in a reasonable 
amount of time.  

 Model-Based Design means having a model of the design. By designing and simulating only a 
controller, an engineer can miss key information about the design that modeling the plant could illustrate. 
By using Simulink and its add-on tools, a designer can model an entire system, including physical 
components with a high degree of accuracy. This enables better testing of designs early in the development 
process, leading to better designs, early discovery of errors, and a higher-quality end product. 

 Monte Carlo techniques are one way of examining a design, testing its robustness, and ensuring 
coverage of the whole design space. Using probability distributions to randomly generate parameter values 
better simulates real-world variation of physical components, both those in the plant and the controller. The 
test we ran in this paper illustrates how variation in just one component can sometimes have a dramatic 
effect on the performance of a design. Correctly specifying physical components is one solution. Designing 
controllers that take into account the full variability of a plant is another. Monte Carlo can help both. COTS 
testing tools can make Monte Carlo simulations easier to manage and faster to run, especially when 
combined with a HPC cluster. 

We also demonstrated how distributed testing, or running tests on a compute cluster, can significantly 
reduce the time needed to fully test a design. In the relatively simple example model and test setup that we 
used, we had to run the 1000 iterations twice, changing a single parameter’s tolerance. Rather than this test 
taking over seven hours to complete, we were able to show identical results generated in one hour by taking 
advantage of a cluster of machines. In the second case, instead of taking an hour, we were able to complete 
testing in eleven minutes. This is a powerful tool for decreasing total testing time. 

In summary, core features of Model-Based Design are simulation and continuous testing. These 
activities result in higher-quality designs and quicker design iterations. Combining Monte Carlo tests and a 
distributed environment makes it faster and easier to fully test a design and iterate it. The ability to model 
an entire system in the same environment and simulate it is key to achieving these benefits. 
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