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Model-Based Design with automatic code generation is an important and established 
technology for developing aerospace embedded control systems. Early verification, 
validation, and test of models and generated code using software tools with accompanying 
workflows are increasingly used. In 2009, The MathWorks released tool qualification kits 
for verification tools based on the commercial aviation software standard DO-178B. The use 
of Model-Based Design for DO-178B applications using qualified verification tools is 
described herein. 

I. Introduction 
Model-Based Design allows engineers to design embedded systems and simulate them on their desktop 

environment for analysis and design. Model-Based Design provides a variety of code generation capabilities that 
teams use to generate source code for many purposes including simulation, rapid prototyping and hardware-in-the-
loop testing. The use of Model-Based Design for flight code design and embedded deployment is also well 
established [1-4].  

  
Flight software needs to undergo rigorous and well-documented verification activities for flight certification, 

such as with the commercial airborne software certification standard DO-178B [5]. With DO-178B, the tool that 
performs the development or verification task needs to be qualified or its output needs to be verified. The procedure 
for qualifying a tool according to DO-178B is based on the tool’s role. If the tool is used for development activities, 
a rigorous qualification procedure applies; for verification tools, a substantial but less rigorous procedure is used.  

 
This paper will show a framework for using commercial off the shelf (COTS) Model-Based Design technology 

to develop embedded flight software. It will present a workflow that includes textual requirements, detailed design 
models, automatic code generation, and a variety of automated verification steps. It will compare this to traditional 
development processes that use paper designs and hand coding. This paper will also examine tool qualification 
artifacts and benefits that can be achieved with a Model-Based Design workflow that includes qualified tools. An 
example implementation using commercially available Model-Based Design tools from The MathWorks [6] will 
guide the discussion. 

II. Model-Based Design Overview 

A. Modeling and Simulation 
A system model includes the algorithm and environment where the algorithm executes. An example algorithm 

may be a control law or a signal processing filter design. For control systems, the environment includes actuators, 
sensors, and the plant. For signal processing systems, the environment may represent a communication transport 
layer with varying latencies and noise. The algorithm model will eventually be deployed as generated code on an 
embedded processor such as a microcontroller (MCU) or digital signal processor (DSP). The plant model can be 
deployed on a real-time test platform for hardware-in-the-loop (HIL) testing of the embedded flight system. It takes 
time and effort to develop models. However, reusing them by generating code for implementation and test is a good 
way to leverage a Model-Based Design investment. 

 

                                                           
1 Manager, Embedded Code Generation and Certification 
2 Embedded Code Generation and Certification 
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A typical system model is developed using Simulink® block diagrams, Stateflow® state machines and truth 
tables, and Embedded MATLAB™ code.  Embedded MATLAB is a subset of the MATLAB® language that 
supports both simulation and C source code generation. Initially released as a small subset in 2004, Embedded 
MATLAB has grown to include most of operators and functions typically used for embedded deployment and real-
time simulation. Code can be generated for Embedded MATLAB files (.m files) directly from the MATLAB 
command line, from Embedded MATLAB blocks created in Simulink, or from Embedded MATLAB functions in 
Stateflow. A related feature is that Simulink diagrams can now be directly embedded inside Stateflow charts. 
Together, these features provide engineers with a highly flexible, multiple domain modeling environment for 
expressing system, software, and hardware designs. 

 
 In order for the model to be clearly understood, it needs to execute or simulate. Simulation first requires that the 

model compile successfully, per the model’s diagnostic settings. Syntax and semantic checks are performed during 
the model compilation stage to check that the model is well specified and complete, for example no missing 
connections between blocks, giving models an immediate advantage over paper or document-based specifications. 
Subsequent run time analyses occur during the normal course of simulation such as array out-of-bounds and 
overflow checks, adding to the integrity of the executable spec. 

 
The simulation results can be shown in many ways using scopes, gauges, and animation. Examples of system 

models with corresponding simulation results are shown in Figures 1 and 2. 
 

 
Figure 1: Aircraft Flight Control Model and Simulation Output Plot 
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Figure 2: Radar Application System Model (top), Embedded MATLAB Function (right), and Output (bottom) 
 
Simulation is accomplished in two ways. One is to use an in-memory representation of the model and execute 

the simulation in an interpretive manner, normal mode. Normal mode simulation provides users with more control 
of the execution environment and greater user interaction, but it can be slow for large models. The other way to 
simulate is to generate code from the model and execute it during simulation. This provides less user interaction but 
it executes faster and is known as accelerated mode, although there is some overhead for the first simulation run to 
generate code. A new rapid acceleration mode is also available. It leverages multiple processing cores to offer faster 
execution, but less user interaction, than accelerated mode. 

 
The simulation model serves as an executable specification. The contents of the model define if it is a system 

model, a software model, or a verification model. The fidelity of the model dictates whether the model is a high-
level or low-level specification. There are many organizational and development aspects to be considered for 
Model-Based Design.  Some span multiple groups or different companies. For example, aircraft manufacturers need 
modeling tools that are system oriented and aid validation. Subsystem suppliers may need tools that are more 
software-oriented, aid verification, and produce software according to certification standards such as DO-178B. 
Successful use of Model-Based Design considers these aspects and allows for fast, easy, and seamless transitions 
between systems and software engineering. Best practices for Model-Based Design adoption are available [7]. 

B. Architecture and Design 
 
A model contains a hierarchy of components, starting with the top level model. Common components include 

subsystems, subsystems in libraries, and referenced models. The components can be virtual or non-virtual. Virtual 
components are graphical conveniences that do not impact simulation semantics or behavior. Non-virtual 
components impact simulation behavior because they are treated as atomic units and thus affect sorting and 
execution order. A related impact also occurs during code generation where C functions can be created from atomic 
subsystems yet virtual subsystems always produce in-lined code.  

 
Subsystems are part of the model they are placed in and cannot be changed independent of the parent model. 

From a version control standpoint, this means that a small change to a subsystem results in a new version of the 
entire model and its corresponding model file.  

 
Subsystems in libraries do exist in separate library models, however, they are not fully atomic or independent of 

the model they are placed in. For example, a subsystem placed in a parent model will inherit attributes of the parent 
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including sample time, data type, and signal width. In software engineering literature, this characteristic is 
commonly referred to as polymorphism and offers developers a great deal of flexibility during component creation 
and assimilation. However, for flight software integration, it is also helpful to have components that are fully atomic 
and whose behavior does not change when combined with other components. This is where model reference helps.  

 
Model reference allows parent models to reference other models, in separate model files, through use of model 

blocks. A model block placed in parent model references a child model in way that preserves the child model’s 
interface. This means that one can develop, code, and verify a model once and then reuse it as a component in 
another model or multiple models without changing its interface or interface control description (ICD). 

 
Model reference components can be simulated in normal or accelerated mode. Figure 3 shows an example model 

architected using model blocks. An architecture graph created by Simulink’s model dependency viewer is also 
shown. Note that the example has model blocks that contain small triangles in each corner to distinguish them from 
other blocks or subsystems. The triangles can be black (filled in) or white (not filled in). White indicates that normal 
mode is used, as shown for the Algorithm model block. Black means accelerated mode is used, as is used for the 
other model blocks. A menu selection in the model block’s parameter form makes it easy to switch simulation 
modes. A third simulation mode is not shown but was recently added, processor-in-the-loop (PIL) mode. PIL mode 
makes it easy to verify the generated code based on the model behavior and is described in the following section. 

 

 
 
Figure 3: Example Model Architecture Model (left) and Corresponding Dependency Graph (right) 
 

C. Embedded Code Generation and Verification 
For companies generating code, it is important to understand the impact on the code from block usage, block 

parameters, and code generation settings. As with any language or tool, engineering teams should agree on the how 
to use the code generator based on its target environment, software integrity level, and other criteria. The target 
environment settings are crucial to establish since they are not defined by ANSI/ISO-C, for example, integer word 
sizes. By selecting the appropriate target word sizes, developers may realize significant code efficiency 
improvement and help ensure that their source code conforms to the processor architecture. Conversely a wrong 
choice may produce errors.  

 
The Real-Time Workshop® Embedded Coder™ product should be used to generate the flight software because 

it offers the greatest control of code output options relating to items such as efficiency, traceability, and verifiability. 
It is also commonly used to integrate generated code with independent system simulation environments because it 
provides high degrees of code integration options, including encapsulated C++. A code generation advisor for Real-
Time Workshop Embedded Coder, shown in Figure 4, helps developers quickly establish settings based on criteria 
such as efficiency, traceability, or safety-precaution.  
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Figure 4: Code Generation Advisor for Establishing and Checking Code Objectives  
 
 C code is the traditional language used for flight code generation. But recent advances now support the 
generation of C++, Verilog, and VHDL. This makes it easy to target a variety of processors and hardware depending 
on the program’s need as shown in Figure 5. 
 

 
 
Figure 5: Generating and Verifying Code for Multiple Hardware Devices 
 
Figure 5 also indicates the need to verify the object code executing on the target against the model. Automated 

code verification using software-in-the-loop (SIL) and processor-in-the-loop (PIL) testing is available using Model-
Based Design with Simulink. SIL testing occurs by compiling and executing the source code on the host and 
comparing it to the model results. PIL works in a similar way but compiles and executes the code on the target 
hardware or Instruction Set Simulator. SIL is often used as a quick, incremental verification step towards successful 
PIL, which is the ultimate goal. Structural code coverage analysis should also be examined during the test process 
based on the DO-178B coverage criteria required such as Modified Condition/Decision Coverage (MC/DC). 

 
With Model-Based Design, engineers can develop an automated SIL and PIL test environment that compares 

numerical results using tolerances agreed upon by the project engineering team. One option is to use the new model 
block PIL simulation mode, mentioned in the previous Architecture and Design section. This mode requires a 
communication mechanism between the host and target (such as Serial or TCP/IP) and application of the PIL API. 
Once established, engineers can set the model block simulation mode to PIL and quickly invoke their PIL test.  
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Code generation verification APIs automate SIL and PIL using scripts for batch testing with numerical 
differencing and plotting. SystemTest™ provides a similar capability but does so using a graphical interface and 
automated reporting. 

D. Model Verification and Validation 
Using Model-Based Design, verification and validation activities occur throughout development. A number of 

new technologies have been introduced that assist with early model verification such as requirements traceability, 
model checking, model coverage, formal methods, and test case generation. 

 
The Model Advisor with Simulink Verification and Validation™ checks models for areas that may impede the 

model’s use in flight software environments. Some checks focus on simulation aspects, others on code efficiency, 
and a new series of checks address certification standards including DO-178B.  For example, one of the checks 
examines model input and output ports to see if they are well defined and do not inherit characteristics such as data 
type and sample rate. Another check examines that user has established their target environment settings. There is 
also an API and graphical editor for adding custom, project-specific, checks.  

  
Another important verification step is to develop and execute model tests. For safety-related systems, the tests 

should be based on the requirements, usually in textual form. Bi-directional links between the model and the high 
level requirements in documents, data bases, or requirements management tools is supported with the requirement 
management interface in Simulink Verification and Validation. Requirements can also appear in the generated code 
as comments with automated linking to and from the model. 

 
With Simulink Design Verifier™ product, test cases can be automatically generated from the model based on 

desired model coverage criteria (e.g, MC/DC). Figure 6 shows the tests generated from a model. Note that the test 
shows an incomplete coverage for a particular path. It was not exercised due to poor design logic which needs to be 
resolved before generating code. Finally, Simulink Design Verifier provides special blocks that help engineers 
perform formal proofs to assess the design logic and enhance its robustness. 

  

 
Figure 6: Model Test Objectives Report using Design Verification Tools 
 
Once the model has satisfied its requirement-based test and model coverage requirements, flight code can be 

automatically generated, as described earlier. Verification of the code with the model is performed using software-
in-the-loop (SIL) and processor-in-the-loop (PIL) as previously described. Hardware-in-the-loop (HIL) testing then 
occurs after software/hardware integration as a final system validation effort in the lab. For hardware-in-the-loop 
testing, code is generated for the plant model. It runs on a highly deterministic, real-time computer. Sophisticated 
signal conditioning and power electronics are needed to properly stimulate the hardware inputs (sensors) and receive 
the outputs (actuator commands). Fault injection hardware may also be included.  

 
Finally, in addition to these simulation based test approaches, it is important to analyze and verify your software 

using formal analysis, for example to show absence of certain run-time errors or to perform MISRA-C® and JSF++ 
code checking. PolySpace® code verification products enable this and support C, C++, and Ada source code. 
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III. DO-178B and Related Standards Overview  

A. DO-178  
DO-178 is a commercial aviation standard used to certify software in airborne systems. It is also heavily used in 

military, space and other applications, due in part, to the lack of another broadly accepted aerospace standard. DO-
178A was released in March 1985, DO-178B was released in December 1992, and DO-178C is under development. 
DO-178B has clearly defined objectives for key software lifecycle process activities including software 
requirements, software design, coding, integration, verification, and configuration management. For each objective, 
outputs are specified that need to be created, verified, and ultimately, used for certification. The objectives and 
outputs are summarized in Tables A-1 to A-10 and are based on the software integrity level. Level A is the highest 
integrity and is used when failure would cause or contribute to a catastrophic failure.  

 
Model-Based Design was in its infancy when DO-178B was introduced. A quick review of the Tables and 

examination of the document shows little notion of the use of models. This is one reason why development of 
version C is underway. The 11th Joint meeting for DO-178C occurred in June 2009 and was attended by more than 
100 participants representing the major aircraft manufacturers and suppliers [8].  Aviation administration officials 
also participated including members from FAA, EASA, and even China’s CAA. When released, DO-178C will 
supplant DO-178B as the world’s primary aerospace software development standard. 

 
MathWorks participates in DO-178C, and in particular, the Model-Based Design subcommittee [9]. A key 

deliverable in support of this effort is a proposed update of objective and output Tables based on Model-Based 
Design activities previously described. The workflow described in Section IV leverages this information to compare 
traditional approaches to DO-178 with those using Model-Based Design. 

B. Related Standards 
 Simulink is unique in its ability to support multiple modeling and deployment domains. As such, there are many 
aerospace safety standards used with Simulink but not covered by DO-178B including systems engineering, code 
deployed in ground-based DSPs, or HDL-based hardware.  Engineering teams that base their DO-178B programs on 
Simulink are able to leverage that investment for reuse in other standards and applications as summarized below. 

 
• ARP-4754 “Certification Considerations for Highly Integrated or Complex Aircraft Systems,” addresses 

Systems Engineering including: 
o Systems Requirements  
o Requirements Validation 
o Systems Design 
o System Verification 

• ARP-4761 “Guidelines for Conducting Safety Assessment Process on Civil Airborne Systems and 
Equipment,” addresses Systems Safety Assessment including: 

o Fault Tree Diagrams  
o Common Cause Analysis  
o Zonal Safety Analysis  
o Functional Hazard Assessment  

• DO-278 “Guidelines for Communication, Navigation, Surveillance, and Air Traffic Management 
(CNS/ATN) Systems Software Integrity Assurance,” addresses Software Engineering for ground and space 
based systems including: 

o Software lifecycle 
o Objectives to be satisfied 
o Evidence required 
o Covers software used on microprocessors and digital signal processors 

• DO-254 “Design Assurance for Airborne Electronic Hardware,” addresses Hardware Engineering 
certification including: 

o Hardware lifecycle 
o Objectives to be satisfied 
o Evidence required 
o Covers FPGAs and ASICs 
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C. DO-178B Tool Qualification 
 
Section 12.2 of DO-178B describes Tool Qualification. As stated, Qualification of a tool is needed when 

processes of this document are eliminated, reduced, or automated by use of a software tool without its output being 
verified as specified in Section 6. DO-178B provides two types of qualification criteria, one for software 
development tools such as code generators and compilers that can introduce errors, and another for software 
verification tools such as code checkers and static analyzers that cannot introduce errors but may fail to detect them. 
A tool cannot be qualified on its own by the tool vendor. It can only be qualified in the context of the project or 
flight application being certified.  

 
The criteria for qualifying development tools is extremely rigorous, whereas the criteria for verification tools is 

less, but still significant. As a result, there are many verification tools but few development tools with commercially 
available qualification kits or support. In fact, there are no DO-178B commercially qualified C compilers as one 
aircraft manufacturer noted in a presentation to the FAA Tools Forum, along with some rationale [10]. 

  
The top reasons why commercial compilers are not FAA-qualified: 

• Complexity  
• Unclear benefits  
• Market forces  
• Language trends 

 
By unclear benefits, it is important to consider that there are many tools in the process of transforming an 

algorithm into flight code including the code generator, cross compiler, assembler, linker, and flasher. If a linker is 
qualified, it is important to understand what, if any, benefit it has on the requirements-based object code verification 
process. Similarly, if a coder is qualified but the compiler and linker are not, one should verify that the object code 
does not contain errors inserted by the compiler or linker.  

 
An aircraft supplier also presented to the FAA Tools Forum [11] and noted that Qualified development tools are 

typically either very simple tools or end up way behind the technology curve. This simplicity is due to a practical 
necessity of tool qualification, which is to reduce the application space and thus reduce the qualification effort. The 
supplier stated that their internal studies have shown that qualifying a development tool was 20 times more 
expensive than qualifying a verification tool. Further, they reported that development tool qualifications do not offer 
a return on investment until after several programs have used the tool, whereas Use of qualified verification tools 
results in savings on first program where it is introduced.  

 
Thus, a common approach by DO-178B practitioners is to use unqualified but state-of-the-art development tools 

with automated and qualified verification tools. This lets developers express their design in the most natural and 
appropriate way, affords a high degree of verification rigor, and offers an investment return even on the first project. 

 
Verification of object code to the model is vital for high integrity systems, even if a fully qualified toolchain of 

coder, compiler, and etcetera existed. One reason is simply the added confidence; some refer to this as a belt-and-
suspenders approach to safety. Another is based on software numerical issues resulting from floating point 
approximations on different platforms. See the classic paper of What Every Computer Scientist Should Know About 
Floating Point Arithmetic [12]. In short, floating point is an approximation of real numbers. For example, squaring 
0.1 in single precision floating point does not yield 0.01; there are extra digits to far left of the decimal point. These 
approximations manifest as subtle but critical differences in execution results of math-intensive algorithms.  

 
This may result in an algorithm yielding different results when it executes as code compiled on the host versus 

when it executes on target. Or in another example, the same code on the same processor with the same compiler but 
using updated math libraries may yield different answers.  Today’s algorithms involve coordinate transformations, 
Fast Fourier Transforms, and trigonometric functions for dynamic inversion and modern flight control laws. 
Processing resources usually demand use of single precision data types.  So engineers should expect differences, but 
they should test for them using established tolerances, and strive to develop algorithms that are robust to these 
affects. One should be wary of approaches that advocate eliminating testing. Do not eliminate testing; automate it 
using SIL, PIL, and other techniques. 
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IV. DO-178B Development Approaches  

A. Traditional Hand Development Approach 
 

 Traditional approaches used to develop and verify software for DO-178B in the 1990s were mostly designing 
and coding by hand but with some automated tool support for compiling and verifying the software. The main 
development process artifacts described in DO-178B include High Level Requirements, Low Level Requirements, 
Source Code, and Object Code. Tools such as text editors and IDEs or code compilers were used for development. 
Verification activities include reviews, conformance to standards, testing, and coverage analysis, with some tool 
automation for code based activities. As stated in the previous section, qualified code verification tools were often 
used but qualified code compilers were not. Figure 7 illustrates the development and verification activities 
traditionally done and indicates the tools used with their qualification status. 

 

 
 
Figure 7: Traditional Hand Development Approach to DO-178B Applications 

B. Traditional Model-Based Design Approach  
By the millennium, Model-Based Design and code generation were starting to be used more heavily for DO-

178B applications. In 2004, one company reported that in just the past year they had generated and certified over a 
million lines of code to DO-178B, including software certified to Level A. Further they found that automatic code 
generation resulted in six-sigma software quality, vastly exceeding hand code quality [13]. As is shown in Figure 8, 
modeling allowed for earlier and more rigorous verification of the previously paper-based design. However, the 
benefits of these verification tools could not be fully realized because they were not qualified. This changed in 
March 2009, when MathWorks released DO Qualification Kit (for DO-178B). 
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Figure 8: Traditional Model-Based Design Approach to DO-178B Applications 

C. Today’s Model-Based Design Approach  
The MathWorks recently released the DO Qualification Kit (for DO-178B), which allows selected verification 

tools to be qualified for a DO-178B project.  The version 1.0 of this product includes tool qualification data for the 
following tools and can be currently be used with releases R2008b or R2009a.  

• Simulink Verification and Validation 
o DO-178B Model Checks 

• SystemTest  
o Limit Test Element 

• PolySpace Code Verifiers 
o PolySpace code verification products for C/C++ 

 
As shown in Figure 9, a highly automated verification workflow with qualified tools is now available. The 

modeling tools provide engineers with high degrees of flexibility for expressing designs. The code generation tools 
produce efficient results and provide many code optimization options. In one example, a company developed an 
algorithm for multi core processing using Simulink, and later, performed a benchmark and found that the generated 
code was 30% faster than the hand code [14]. 
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Figure 9: Today’s Model-Based Design Approach to DO-178B Applications using Qualified Tools 
 
Recommendations for DO-178B Projects 
The following outline describes a recommended workflow for using The MathWorks products in DO-178B with 

qualified verification tools. 
  
1. Requirements Process 
For requirements validation, use traditional peer reviews of the requirements.  No changes are proposed for this 

process. For requirements linking, use the Requirements Management Interface to establish links between the model 
and high level requirements in textual or third-party tool form. 

  
2. Modeling Process 
For the low level requirements, use Simulink and Stateflow for modeling.  Use one model since it provides a 

single “truth” in the design.  Note that not every domain is appropriate for the use of Simulink or Stateflow, and this 
must be considered for each project.  It is also understood that for any given project, some of the software will need 
to be developed in traditional ways. Avoid conversion from Simulink to third party design tools as this introduces a 
separate step, and thus a new error introduction point, and adds no real value to the process.  This also results in an 
additional artifact that must be reviewed. 

 
To achieve the full benefits of Model-Based Design, early verification of the design should occur at the model 

level rather than being a downstream activity.  Perform simulation tests based on higher level requirements.  There 
are some suggested improvements in the model verification process that can achieve savings: 

• Use Model Advisor and qualify it for DO-178B projects 
• Use the Requirements Management Interface for requirements linking and reporting 
• Use SystemTest to automate simulations and reporting, and qualify it for DO-178B projects 
• Use model coverage during simulations to assess the effectiveness of the high level test cases 
 
One of the typical activities in a DO-178B process is a design review.  The purpose of this review is to show that 

the low level requirements comply with the high level requirements and conform to standards.  The methods used to 
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achieve these activities are reviews and analyses.  The Model Advisor performs an automated review of the model 
that covers most of the conformance to standards assessment, but manual inspection of items not easily automated 
should also be done.  Model compliance to high level requirements can be assessed using simulation, which is a 
form of analysis, rather then performing traditional design reviews.  Simulations are much more effective than 
design reviews in finding real issues in the design. 

 
Simulation results should be documented, assessed and archived for a project. SystemTest provides a mechanism 

for running the simulations, automatically generating test reports and assessing the results with a qualified pass/fail 
checker.  It automates simulation and reduces the simulation results review activity to a review of the pass/fail 
results reported by the tool.  In the case where failures are detected, it also provides the ability for engineers to 
investigate the failures using data that is automatically stored during test execution.  It is also possible to use this 
tool for regression testing when changes are made to the models. 

 
Up to this point the Model Coverage tool has not been used during simulations.  The use of this tool during 

simulation provides an assessment of how effective the high level requirements based tests cover the functionality in 
the model.  Note that there may be derived requirements in the model, and thus, the Model Coverage tool may not 
indicate full coverage during those simulations.  Data from the Model Coverage Report can be used later in the 
process by using this data as input to the Simulink Design Verifier to assist in completing test coverage.   

  
3. Coding Process 
Use code generation from Real-Time Workshop Embedded Coder because it is the most efficient approach to 

obtaining code from a development standpoint.  The verification of the source code, whether it is automatically 
generated or not, requires a code review as part of the DO-178B process.  PolySpace products can be used to 
automate portions of the code review and credit can be taken for up to three of the code review objectives by using 
the DO Qualification Kit for PolySpace.  Use of PolySpace and the DO Qualification Kit significantly reduce the 
cost of code reviews.   

 
4. Object Code Testing Process 
Testing of the object code and achieving structural coverage during those tests can be one of the more time 

consuming and expensive processes on a DO-178B project.  Establish a goal to reuse the high level testing done at 
the model level to also test the code.  This is a good plan to have, but it is likely that some low level testing will also 
be needed in order to achieve full structural coverage of the code. 

 
One of the key tools to be used in this process is the Embedded IDE Link™ product. This tool allows Simulink 

to perform PIL testing for code that is compiled using popular IDEs and compilers. The use of the IDE link in 
conjunction with a CPU development board would allow test cases to be reused to verify the flight code in an 
efficient manner. 

 
As described previously, the Model Coverage Tool can be used to determine the level of coverage achieved from 

the test cases used during simulation.  It is likely that full coverage will not be achieved from the high level test 
cases.  In order to achieve full coverage, the Simulink Design Verifier may be used to supplement the high level test 
cases by automatically generating test cases.  An efficient method of doing this is to input the model coverage data 
from the high level testing into Simulink Design Verifier, and it will then produce the test cases necessary to make 
up the uncovered portions of the model. The engineer can then run the generated tests and confirm the model was 
covered using the Model Coverage Tool. The combination of these sets of test cases can then be executed on the 
code.  A third-party code coverage tool can then assess the actual code coverage from these test cases.  There may 
be some additional coverage holes found during the code testing that may need further analysis, but these should be 
a small percentage of the overall coverage and afford a significant net reduction in overall testing effort. 

 
DO-178B also requires that equivalence class tests be performed on input data ranges.  The model coverage tool 

also helps in this area because it can record signal ranges during testing and show the minimum and maximum 
values achieved.  Additionally, the Simulink Design Verifier can be set up to automatically generate equivalence 
class test cases using the Test Objective Block on input signals.  In this case the user must specify the test values 
based on the data range and desired equivalence classes.   Use of Simulink Design Verifier to generate equivalence 
class test cases offers further reductions to the testing effort.  
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The optimum way to set up the system for use of Simulink Design Verifier is to use reference models in the 
design and to generate test cases for each reference model, individually.  Reference Models are already used at many 
companies developing large scale modeling due to simulation performance improvements.  

 
In lieu of some types of robustness testing, credit can be taken for PolySpace formal analysis.  PolySpace has the 

ability to detect uninitialized variables, numeric overflows, infinite loops, divide by zeros, etc.  Thus by using this 
qualifiable tool, test cases for detecting these types of errors are no longer needed.  This further reduces the overall 
object code testing effort by eliminating the need for these robustness test cases. 

IV. Conclusions 
This paper presented an overview of Model-Based Design and noted important aspects for using models to 

develop and generated embedded flight software.  Discussion focused on the verification of models and code using 
new technology from MathWorks. New verification tool qualification kits for DO-178B aid this process.  
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