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ABSTRACT 

Electrical system capacity determination for conventional 
vehicles can be expensive due to repetitive empirical 
vehicle-level testing.  Electrical system modeling and 
simulation have been proposed to reduce the amount of 
physical testing necessary for component selection [1, 
2].  

To add value to electrical system component selection, 
the electrical system simulation models must regard the 
electrical system as a whole [1].  Electrical system 
simulations are heavily dependent on the battery sub-
model, which is the most complex component to 
simulate. Methods for modeling the battery are typically 
unclear, difficult, time consuming, and expensive.   

A simple, fast, and effective equivalent circuit model 
structure for lead-acid batteries was implemented to 
facilitate the battery model part of the system model.  
The equivalent circuit model has been described in 
detail.  Additionally, tools and processes for estimating 
the battery parameters from laboratory data were 
implemented.  After estimating parameters from 
laboratory data, the parameterized battery model was 
used for electrical system simulation.  The battery model 
was capable of providing accurate simulation results and 
very fast simulation speed. 

INTRODUCTION 

Modeling and simulation are important for electrical 
system capacity determination and optimum component 
selection.  The battery sub-model is a very important 
part of an electrical system simulation, and the battery 
model needs to be high-fidelity to achieve meaningful 
simulation results.  Current lead-acid battery models can 
be expensive, difficult to parameterize, and time 
consuming to set up.  In this paper, an alternative lead-
acid battery system model has been proposed, which 
provided drive cycle simulation accuracy of battery 
voltage within 3.2%, and simulation speed of up to 
10,000 times real-time on a typical PC.   

In Figure 1, a conventional design process is contrasted 
with Model-Based Design for electrical system 
component selection.  The conventional design process 
for component selection, shown in Figure 1a, involves a 
costly, time-consuming, iterative process of building a 
test vehicle, evaluating performance, and then modifying 
the electrical system components.  Using Model-Based 
Design, Figure 1b, introduces additional steps that make 
the overall design process more efficient.  Model-Based 
Design requires only one or two iterations of modifying 
the test vehicle and re-verifying the electrical system 
design. 

 

Figure 1 [6]: Component Selection Processes 
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A parameterization method has also been proposed, 
with testing requirements of standard discharge and 
charge curves.  The battery model was used in electrical 
system simulations to study component sizing and 
selection for application to various vehicle electrical 
system configurations.  The actual data collected during 
the battery modeling study were customer proprietary, 
and therefore were not included in this paper. 

BATTERY MODEL 

BATTERY MODEL STRUCTURE 

A physical system lead-acid battery model was created1.  
The battery model was designed to accept inputs for 
current and ambient temperature, as shown in Figure 2.  
The outputs were voltage, SOC, and electrolyte 
temperature.   

                                                      
1 Modeled Using Simulink® 
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Figure 2 [6]: Battery Model 

A diagram of the overall battery model structure is 
shown in Figure 3, which contains three major parts: a 
thermal model, a charge and capacity model, and an 
equivalent circuit model.  The thermal model tracks 
electrolyte temperature and depends on thermal 
properties and losses in the battery.  The charge and 
capacity model tracks the battery’s state of charge 
(SOC), depth of charge remaining with respect to 
discharge current (DOC), and the battery’s capacity.  
The charge and capacity model depends on temperature 
and discharge current.  The battery circuit equations 
model simulates a battery equivalent circuit.  The 
equivalent circuit depends on battery current and several 
nonlinear circuit elements.  

 
 

 
 

 
 
 
 
 
 

Figure 3 [6]: Simulink® Model Structure 



  

EQUIVALENT CIRCUIT 

The structure of the battery circuit equations in Figure 3 
was a simple nonlinear equivalent circuit [4], which is 
shown in Figure 4.  The structure did not model the 
internal chemistry of the lead-acid battery directly; the 
equivalent circuit empirically approximated the behavior 
seen at the battery terminals.  The structure consisted of 
two main parts: a main branch which approximated the 
battery dynamics under most conditions, and a parasitic 
branch which accounted for the battery behavior at the 
end of a charge.  
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Figure 4 [6]: Battery Equivalent Circuit 

The battery equivalent circuit represented one cell of the 
battery.  The output voltage was multiplied by six, the 
number of series cells, to model a 12 volt automotive 
battery.  In Figure 3, the number of series cells was 
entered into the Gain block with parameter value “ns.”  
The voltage multiplication by six assumed that each cell 
behaved identically.  Figure 4 shows the electrical circuit 
diagram containing elements that were used to create 
the battery circuit equations.   

Each equivalent circuit element was based on nonlinear 
equations.  The nonlinear equations included 
parameters and states. The parameters of the equations 
were dependent on empirically determined constants.  
The states included electrolyte temperature, stored 
charge, and circuit node voltages and currents.  The 
equations were as follows: 

Main Branch Voltage 

Equation 1 approximated the internal electro-motive 
force (emf), or open-circuit voltage of one cell.  The 
computation was performed inside the “Compute Em” 
block in Figure 3.  The emf value was assumed to be 
constant when the battery was fully charged.  The emf 
varied with temperature and state of charge (SOC).  

( )( )SOCKEE Emm −+−= 12730 θ  (1) 
  
where: 

Em was the open-circuit voltage (EMF) in volts 
Em0 was the open-circuit voltage at full charge in volts 
KE was a constant in volts / °C 
θ was electrolyte temperature in °C 
SOC was battery state of charge 

 

Terminal Resistance 

Equation 2 approximated a resistance seen at the 
battery terminals, and it was calculated inside the 
“Compute R0” block in Figure 3.  The resistance was 
assumed constant at all temperatures, and varied with 
state of charge. 

( )[ ]SOCARR −+= 11 0000  (2) 
 
 where: 

R0 was a resistance in Ohms 
R00 was the value of R0 at SOC=1 in Ohms 
A0 was a constant 
SOC was battery state of charge 

 

Main Branch Resistance 1 

Equation 3 approximated a resistance in the main 
branch of the battery.  The computation was performed 
inside the “Compute R1” block in Figure 3.  The 
resistance varied with depth of charge, a measure of the 
battery’s charge adjusted for the discharge current.  The 
resistance increased exponentially as the battery 
became exhausted during a discharge. 

( )DOCRR ln101 −=  (3) 
  
where: 

R1 was a main branch resistance in Ohms 
R10 was a constant in Ohms 
DOC was battery depth of charge 

 

Main Branch Capacitance 1 

Equation 4 approximated a capacitance (or time delay) 
in the main branch.  The computation was performed 
inside the “Compute C1” block in Figure 3.  The time 
constant modeled a voltage delay when battery current 
changed. 

111 RC τ=  (4) 
  
where: 

C1 was a main branch capacitance in Farads  
τ1 was a main branch time constant in seconds  
R1 was a main branch resistance in Ohms 



  

 
 
 

Main Branch Resistance 2 

Equation 5 approximated a main branch resistance. The 
computation was performed inside the “Compute R2” 
block in Figure 3.  The resistance increased 
exponentially as the battery state of charge increased.  
The resistance also varied with the current flowing 
through the main branch.  The resistance primarily 
affected the battery during charging.  The resistance 
became relatively insignificant for discharge currents.   
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 where: 

R2 was a main branch resistance in Ohms 
R20 was a constant in Ohms 
A21 was a constant 
A22 was a constant 
Em was the open-circuit voltage (EMF) in volts 
SOC was battery state of charge 
Im was the main branch current in Amps 
I* was the a nominal battery current in Amps 

 

Parasitic Branch Current 

Equation 6 approximated the parasitic loss current which 
occurred when the battery was being charged.  The 
computation was performed inside the “Compute Ip” 
block in Figure 3.  The current was dependent on the 
electrolyte temperature and the voltage at the parasitic 
branch.  The current was very small under most 
conditions, except during charge at high SOC.  Note that 
while the constant Gpo was measured in units of 
seconds, the magnitude of Gpo was very small, on the 
order of 10-12 seconds. 
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 where: 

Ip was the current loss in the parasitic branch 
VPN was the voltage at the parasitic branch 
Gp0 was a constant in seconds 
τp was a parasitic branch time constant in seconds 
VP0 was a constant in volts 
Ap was a constant 
θ was electrolyte temperature in °C 
θf was electrolyte freezing temperature in °C 

 

CHARGE AND CAPACITY 

The “Charge and Capacity” block in Figure 3 tracked the 
battery’s capacity, state of charge, and depth of charge.  
Capacity measured the maximum amount of charge that 

the battery could hold.  State of charge (SOC) measured 
the ratio of the battery’s available charge to its full 
capacity.  Depth-of-charge (DOC) measured the fraction 
of the battery’s charge to usable capacity, because 
usable capacity deceased with increasing discharge 
current.  The equations that tracked capacity, SOC, and 
DOC were as follows:  

Extracted Charge 

Equation 7 tracked the amount of charge extracted from 
the battery.  The charge extracted from the battery was 
a simple integration of the current flowing into or out of 
the main branch.  The initial value of extracted charge 
was necessary for simulation purposes. 

( ) ( ) ττ dIQtQ m

t

initee ∫ −+=
0_  (7) 

 
 where: 

Qe was the extracted charge in Amp-seconds 
Qe_init was the initial extracted charge in Amp-seconds 
Im was the main branch current in Amps 
τ was an integration time variable 
t was the simulation time in seconds 

 

Total Capacity 

Equation 8 approximated the capacity of the battery 
based on discharge current and electrolyte temperature.    
However, the capacity dependence on current was only 
for discharge.  During charge, the discharge current was 
set equal to zero in Equation 8 for the purposes of 
calculating total capacity.   

Automotive batteries were tested throughout a large 
ambient temperature range.  Lab data across the entire 
tested current range showed that battery capacity began 
to diminish at temperatures above approximately 60°C.  
The look-up table (LUT) variable Kt in Equation 8 was 
used to empirically model the temperature dependence 
of battery capacity. 
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 where: 

Kc was a constant 
C0* was the no-load capacity at 0°C in Amp-seconds 
Kt was a temperature dependent look-up table 
θ was electrolyte temperature in °C 
I was the discharge current in Amps 
I* was the a nominal battery current in Amps 
δ was a constant 

 



  

State of Charge and Depth of Charge  

Equation 9 calculated the SOC and DOC as a fraction of 
available charge to the battery’s total capacity.  State of 
charge measured the fraction of charge remaining in the 
battery.  Depth of charge measured the fraction of 
usable charge remaining, given the average discharge 
current.  Larger discharge currents caused the battery’s 
charge to expire more prematurely, thus DOC was 
always less than or equal to SOC.   
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where: 

SOC was battery state of charge 
DOC was battery depth of charge 
Qe was the battery’s charge in Amp-seconds 
C was the battery’s capacity in Amp-seconds 
θ was electrolyte temperature in °C 
Iavg was the mean discharge current in Amps 

 

Estimate of Average Current 

The average battery current was estimated as follows in 
Equation 10. 

( )11 +
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where: 

Iavg was the mean discharge current in Amps 
Im was the main branch current in Amps 
τ1 was a main branch time constant in seconds  

 

THERMAL MODEL 

Electrolyte Temperature 

The “Thermal Model” block in Figure 3 tracked the 
battery’s electrolyte temperature.  Equation 11 was 
modeled to estimate the change in electrolyte 
temperature, due to internal resistive losses and due to 
ambient temperature. The thermal model consists of a 
first order differential equation, with parameters for 
thermal resistance and capacitance.   
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 where: 

θ was the battery’s temperature in °C 
θa was the ambient temperature in °C 
θinit was the battery’s initial temperature in °C, assumed to be 

equal to the surrounding ambient temperature 
Ps was the I2R power loss of R0 and R2 in Watts 
Rθ was the thermal resistance in °C / Watts 

Cθ was the thermal capacitance in Joules / °C 

τ was an integration time variable 
t was the simulation time in seconds 

 

BATTERY PARAMETER IDENTIFICATION 

Parameterization of a battery model, such as the 
procedure proposed in [1], can be complex and difficult.  
The parameterization process in [1] requires difficult, 
nonstandard test procedures.  A more automated 
approach was studied in detail and implemented.  The 
automated approach used an optimization routine to 
adjust the battery model parameters, using discharge 
and charge test data.  

DATA REQUIREMENTS 

The parameterization method required standard lab test 
data.  For discharge, full batteries were discharged at 
constant currents and temperatures.  For charge, 
batteries were charged at constant current, until the 
terminal voltage approached the gassing voltage [5] for 
the battery.  Then, the charges were continued at 
constant voltage, until the batteries reached a full 
charge.  Several typical currents and ambient 
temperatures were used for the testing procedure.  The 
quality and consistency of the lab data were very 
important in achieving a good fit with the lab data.  The 
data showed some significant variability between tests, 
but the majority of the variability observed was at open 
circuit (no current).  An example is shown in Figure 5.   
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Figure 5 [6]: Variability of Measured Discharge 
Curves 



  

AUTOMATIC PARAMETER TUNING 

Due to the variability observed in battery discharge 
curves, a set of “average” discharge curves was used for 
the parameter tuning process.  The average curves were 
created by calculating the mean voltage of all discharge 
tests taken at a unique combination of operating 
conditions (test runs at the same temperature and 
discharge current).  An example is shown in Figure 6.   

0 0.5 1 1.5 2 2.5
10.5

11

11.5

12

12.5

13

Time (hours)

V
ol

ta
ge

Average of Battery Curves

Average
Curve

Stop
Here

 

Figure 6 [6]: Mean-Value Discharge Curves 

The overall estimation process involved several steps: 

1. Optimizing capacity model 
2. Optimizing discharge parameters 
3. Optimizing charge and discharge parameters 
 

Step 1: Capacity Model Optimization 

The capacity was calculated from discharge test data for 
each tested temperature and discharge current.  The 
mean-value discharge curves were used.  Then, an 
optimization routine2 was used to adjust the nonlinear 
capacity parameters to best fit the capacity equations to 
the measured mean capacities.  These optimized 
parameter values were the final capacity parameters.   

Step 2: Discharge Optimization 

Next, the battery parameters were optimized to minimize 
the error between measured and simulated discharge 
curves.  Only parameters that affected the discharge 
simulation were tuned3.  The tuned parameters were 
given an initial value and min/max constraints.   

The selection of the parameters and constraints for 
optimization was not a trivial process.  Determining 
which parameters affected only the discharge cycles 
was not immediately straightforward.  The parameter 
                                                      
2 Using Optimization Toolbox® 
3 Using Simulink Parameter Estimation® 

selections were the result of a significant amount of trial 
and error testing.  Only parameters that were well 
exercised in the discharge curve data could be 
optimized, because of the risk of throwing off parameters 
which were dominant under other battery conditions, 
such as charging.  

The optimization routine also adjusted the initial SOC of 
each discharge simulation, within reasonable 
constraints.  By changing initial SOC, the entire 
simulated discharge curve effectively shifted down and 
to the left, or up and to the right as shown in Figure 7.  
Shifting the initial SOC allowed the simulated discharge 
curve to better align with the test data.  Initial SOC was a 
necessary degree of freedom, because the batteries 
were not consistently fully charged before the test 
began.   
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Figure 7 [6]: Initial SOC Variation 

The last 25% of the measured discharge data was 
ignored for the initial optimization.   The data was 
ignored because a large voltage error would occur if 
there was a slight error in the capacity, causing the 
simulated battery to fully discharge and the voltage to 
drop off before the tested battery voltage did.   The 
voltage error would throw off the optimized parameters 
significantly. 

After the optimization, each of the results was plotted for 
analysis.  The curve fitting was considered to be 
reasonable.  Some typical fitting variability under 
different battery conditions is shown in Figure 8 and 
Figure 9.  Some variability was typical at the beginning 
and end of the discharge cycle, including differences in 
the battery’s capacity.  Some of the differences were 
attributed to using different physical batteries for each 
lab test.   
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Figure 8 [6]: Discharge Curve Example 1 
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Figure 9 [6]: Discharge Curve Example 2 

 
Step 3: Combined Charge and Discharge Optimization 

After the battery discharge parameters were fully 
optimized, then the charge curves were optimized.  
However, while some parameters primarily affected the 
battery charging condition, other parameters affected 
both the discharge and charge.  Consequently, both 
discharge and charge test data and parameters were 
used in the final optimization.  Simulated voltage and 
current both needed to be optimized for charging curves 
only, because neither was held constant throughout the 
entire tests.  Weight coefficients were used to balance 
the optimization of the current vs. voltage errors, 
because the raw current and voltage values had some 
magnitude difference. 

The results were reasonable with respect to the battery 
test data.  Many of the simulated and measured results 
lined up very closely.  Note that the discharge test 
results did worsen slightly during the combined charge 
and discharge optimization (step 3), but the curves were 
still very close.  Some of the worst-case results 
observed are shown in Figure 10 and Figure 11. 
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Figure 10 [6]: Final Charge Curve - Worst Case 
Example Observed 

 

0 0.5 1 1.5 2 2.5 3
11

11.5

12

12.5

13

13.5

V
ol

ta
ge

Example Discharge Tuning Result

0.5 1 1.5 2 2.5 3
0

0.5

1

S
O

C
/

D
O

C
 

Time (hours)

SOC
DOC

Simulated
Measured

 

Figure 11 [6]: Final Discharge Curve - Worst Case 
Example Observed  

Additional Tuning 

After the major optimizations, the battery’s thermal 
model was adjusted manually.  The thermal resistance 
and capacitance were adjusted based on data from the 
application of the battery in a vehicle test.  The 
adjustment was made because the thermal properties 
depend heavily on the installation of the battery in a 
vehicle.   



  

The parameters R1 and τ1 affected the end of discharge 
slope and time constant.  The parameters were tuned4 
with a few discharge curves that included the after-
discharge settling time, similar to the curves shown in 
Figure 5.  The parameters were not well-exercised in 
the rest of the battery parameter estimation process, so 
they had to be tuned separately.  Once the parameter 
values were determined, the entire fitting process was 
re-run with the new values to ensure an optimal fit to the 
lab data.   

USE IN ELECTRICAL SYSTEM SIMULATIONS 

The final battery model block, shown in Figure 12, was 
used within an electrical system simulation model.  
Multiple battery sizes were parameterized to facilitate 
electrical system component selection.  The battery 
block was used in drive cycle simulations with different 
parameters for the different battery sizes.   
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Figure 12 [6]: Battery Model for Electrical System 
Simulation 

Speed and Accuracy 

The battery model was capable of simulating one hour of 
simulation time in less than half a second of real time.  
The simulation was performed on a typical PC using a 
Runge-Kutta (4, 5) variable step solver.  Open-loop input 
current data was used at a 1 second sample time.  

To validate the battery model, a test vehicle was run 
through several drive cycles to gather actual RPM, 
temperature, and battery current and voltage data to 
compare to the simulation.  An example is shown in 
Figure 13.  The battery model was simulated using 
RPM, temperature, and current inputs.  On a 1-hour 
stop-and-go cycle, the accuracy of the simulated battery 
model voltage was within 3.2% (0.42 Volts) throughout.  
On a 1-hour idling simulation with transmission in park, 
the voltage was within 1.2% (0.15 Volts).   

                                                      
4 Using Simulink Parameter Estimation® 
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Figure 13 [6]: Battery Simulation Voltage  

FUTURE WORK 

Battery modeling is a difficult and time-consuming task.  
Given additional time, many additions and changes 
could have been made to improve the results.  
Improvements have a point of diminishing returns when 
the error experienced in the battery model becomes 
smaller than the variability experienced with real 
batteries.  However, there were a few improvements that 
could have been investigated to further improve the 
battery parameterization process.   

Battery Aging and Typical Performance 

Undesired aging effects can occur when test batteries 
are fully charged and discharged repeatedly.  In this 
paper, a new battery was tested for only four discharge 
and charge cycles, to minimize aging effects.  However, 
the possibility of instead obtaining parameterization data 
with weaker, broken-in batteries should be studied.  
Using slightly aged batteries might improve the battery 
parameterization, allowing simulation of more typical 
electrical system performance. 

Simpler Application to Other Batteries 

Approximating parameters for a battery of the same 
chemistry but different capacity should be possible 
without repeating the entire data collection and 
optimization process.  In this paper, two battery 
capacities were parameterized, however, a direct 
relationship could not be found between the optimized 
parameters of each of the two batteries.  The lack of a 
direct relationship between parameters of two batteries 
having the same chemistry but different capacity could 
have been caused by “noise” in the battery data or by 
some parameters not being sensitive.  The parameter 
relationship for different capacities would be a very 
useful topic for further study, because a capacity 
relationship could provide a cost savings if a few known 
adjustments could be made to the parameters to create 



  

additional battery sizes without repeating the entire test 
process for each new battery capacity.   

Measuring Battery Capacity 

Battery capacity was very difficult to estimate correctly.  
One reason for the difficulty was battery variability.  
Another reason for the difficulty was that ensuring the 
battery was fully charged before discharge testing was 
not easy.  Fully charging the battery was more of an 
issue at higher temperatures where charging losses are 
significant, and thus achieving a full charge becomes 
difficult.  The charging difficulties at higher temperatures 
should be taken into consideration during the lab testing 
process.  The batteries should be as completely charged 
as possible before discharge tests begin. 

CONCLUSION 

A lead-acid battery model was developed, along with 
tools to parameterize the model from laboratory data.   
Construction of an equivalent circuit model has been 
described.  A semi-automated process was used to 
estimate parameters for the battery model from 
laboratory data.  The completed battery model simulated 
at approximately 10,000 times real-time.  The accuracy 
of the simulated battery model voltage was within 3.2% 
in comparison to vehicle drive cycle measurements.  
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